BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 31088968)

  • 1. EHMT2 and SETDB1 protect the maternal pronucleus from 5mC oxidation.
    Zeng TB; Han L; Pierce N; Pfeifer GP; Szabó PE
    Proc Natl Acad Sci U S A; 2019 May; 116(22):10834-10841. PubMed ID: 31088968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Immunochemical Detection of Modified Cytosine Species in Mammalian Preimplantation Embryos.
    Zeng TB; Szabó PE
    Methods Mol Biol; 2021; 2198():147-157. PubMed ID: 32822029
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptional activation of transposable elements in mouse zygotes is independent of Tet3-mediated 5-methylcytosine oxidation.
    Inoue A; Matoba S; Zhang Y
    Cell Res; 2012 Dec; 22(12):1640-9. PubMed ID: 23184059
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine.
    Iqbal K; Jin SG; Pfeifer GP; Szabó PE
    Proc Natl Acad Sci U S A; 2011 Mar; 108(9):3642-7. PubMed ID: 21321204
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maternal TET3 is dispensable for embryonic development but is required for neonatal growth.
    Tsukada Y; Akiyama T; Nakayama KI
    Sci Rep; 2015 Oct; 5():15876. PubMed ID: 26507142
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dysregulation and prognostic potential of 5-methylcytosine (5mC), 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC) levels in prostate cancer.
    Storebjerg TM; Strand SH; Høyer S; Lynnerup AS; Borre M; Ørntoft TF; Sørensen KD
    Clin Epigenetics; 2018 Aug; 10(1):105. PubMed ID: 30086793
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes.
    Gu TP; Guo F; Yang H; Wu HP; Xu GF; Liu W; Xie ZG; Shi L; He X; Jin SG; Iqbal K; Shi YG; Deng Z; Szabó PE; Pfeifer GP; Li J; Xu GL
    Nature; 2011 Sep; 477(7366):606-10. PubMed ID: 21892189
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 5-Hydroxymethylcytosine in the mammalian zygote is linked with epigenetic reprogramming.
    Wossidlo M; Nakamura T; Lepikhov K; Marques CJ; Zakhartchenko V; Boiani M; Arand J; Nakano T; Reik W; Walter J
    Nat Commun; 2011; 2():241. PubMed ID: 21407207
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Haploinsufficiency, but not defective paternal 5mC oxidation, accounts for the developmental defects of maternal Tet3 knockouts.
    Inoue A; Shen L; Matoba S; Zhang Y
    Cell Rep; 2015 Feb; 10(4):463-70. PubMed ID: 25640176
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maternal high-fat diet changes DNA methylation in the early embryo by disrupting the TCA cycle intermediary alpha ketoglutarate.
    Penn A; McPherson N; Fullston T; Arman B; Zander-Fox D
    Reproduction; 2023 Apr; 165(4):347-362. PubMed ID: 36633493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative dynamics of 5-methylcytosine reprogramming and TET family expression during preimplantation mammalian development in mouse and sheep.
    Jafarpour F; Hosseini SM; Ostadhosseini S; Abbasi H; Dalman A; Nasr-Esfahani MH
    Theriogenology; 2017 Feb; 89():86-96. PubMed ID: 28043375
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dynamics of genomic 5-hydroxymethylcytosine during mouse oocyte growth.
    Sakashita A; Kobayashi H; Wakai T; Sotomaru Y; Hata K; Kono T
    Genes Cells; 2014 Aug; 19(8):629-36. PubMed ID: 24995522
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Generation and replication-dependent dilution of 5fC and 5caC during mouse preimplantation development.
    Inoue A; Shen L; Dai Q; He C; Zhang Y
    Cell Res; 2011 Dec; 21(12):1670-6. PubMed ID: 22124233
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of 5-methylcytosine and 5-hydroxymethylcytosine during pronuclear development in equine zygotes produced by ICSI.
    Heras S; Smits K; De Schauwer C; Van Soom A
    Epigenetics Chromatin; 2017; 10():13. PubMed ID: 28331549
    [TBL] [Abstract][Full Text] [Related]  

  • 15. H3K9me2 attracts PGC7 in the zygote to prevent Tet3-mediated oxidation of 5-methylcytosine.
    Szabó PE; Pfeifer GP
    J Mol Cell Biol; 2012 Dec; 4(6):427-9. PubMed ID: 22750790
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Histone H3 Methylated at Arginine 17 Is Essential for Reprogramming the Paternal Genome in Zygotes.
    Hatanaka Y; Tsusaka T; Shimizu N; Morita K; Suzuki T; Machida S; Satoh M; Honda A; Hirose M; Kamimura S; Ogonuki N; Nakamura T; Inoue K; Hosoi Y; Dohmae N; Nakano T; Kurumizaka H; Matsumoto K; Shinkai Y; Ogura A
    Cell Rep; 2017 Sep; 20(12):2756-2765. PubMed ID: 28930672
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GSE is a maternal factor involved in active DNA demethylation in zygotes.
    Hatanaka Y; Shimizu N; Nishikawa S; Tokoro M; Shin SW; Nishihara T; Amano T; Anzai M; Kato H; Mitani T; Hosoi Y; Kishigami S; Matsumoto K
    PLoS One; 2013; 8(4):e60205. PubMed ID: 23560077
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impaired active DNA demethylation in zygotes generated by round spermatid injection.
    Kurotaki YK; Hatanaka Y; Kamimura S; Oikawa M; Inoue H; Ogonuki N; Inoue K; Ogura A
    Hum Reprod; 2015 May; 30(5):1178-87. PubMed ID: 25740879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A TET homologue protein from Coprinopsis cinerea (CcTET) that biochemically converts 5-methylcytosine to 5-hydroxymethylcytosine, 5-formylcytosine, and 5-carboxylcytosine.
    Zhang L; Chen W; Iyer LM; Hu J; Wang G; Fu Y; Yu M; Dai Q; Aravind L; He C
    J Am Chem Soc; 2014 Apr; 136(13):4801-4. PubMed ID: 24655109
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tet3 and DNA replication mediate demethylation of both the maternal and paternal genomes in mouse zygotes.
    Shen L; Inoue A; He J; Liu Y; Lu F; Zhang Y
    Cell Stem Cell; 2014 Oct; 15(4):459-471. PubMed ID: 25280220
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.