These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 31089158)

  • 1. Phenomenological modelling of non-volatile memory threshold voltage shift induced by nonlinear ionization with a femtosecond laser.
    Chiquet P; Chambonneau M; Della Marca V; Postel-Pellerin J; Canet P; Souiki-Figuigui S; Idda G; Portal JM; Grojo D
    Sci Rep; 2019 May; 9(1):7392. PubMed ID: 31089158
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Study on the polarization dependence of nonlinear absorption of ultrafast laser pulses in bulk fused silica.
    Hu K; Guo Z; Cao T; Liu S; Liu Z; Li Z; Xu Q; Chen K; Peng J
    Opt Express; 2022 Mar; 30(6):8949-8958. PubMed ID: 35299335
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Memory in nonlinear ionization of transparent solids.
    Rajeev PP; Gertsvolf M; Simova E; Hnatovsky C; Taylor RS; Bhardwaj VR; Rayner DM; Corkum PB
    Phys Rev Lett; 2006 Dec; 97(25):253001. PubMed ID: 17280346
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ultrafast Laser Writing Deep inside Silicon with THz-Repetition-Rate Trains of Pulses.
    Wang A; Das A; Grojo D
    Research (Wash D C); 2020; 2020():8149764. PubMed ID: 32510057
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy.
    Schaffer CB; Brodeur A; García JF; Mazur E
    Opt Lett; 2001 Jan; 26(2):93-5. PubMed ID: 18033517
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tubular filamentation for laser material processing.
    Xie C; Jukna V; Milián C; Giust R; Ouadghiri-Idrissi I; Itina T; Dudley JM; Couairon A; Courvoisier F
    Sci Rep; 2015 Mar; 5():8914. PubMed ID: 25753215
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Femtosecond micromachining in transparent bulk materials using an anamorphic lens.
    Desautels GL; Brewer CD; Walker MA; Juhl SB; Finet MA; Powers PE
    Opt Express; 2007 Oct; 15(20):13139-48. PubMed ID: 19550582
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of femtosecond-laser induced nanostructures in optical memory.
    Shimotsuma Y; Sakakura M; Miura K; Qiu J; Kazansky PG; Fujita K; Hirao K
    J Nanosci Nanotechnol; 2007 Jan; 7(1):94-104. PubMed ID: 17455477
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Temporal modulation toward femtosecond laser-induced nonlinear ionization process.
    Sun Y; Yin W; Yao Q; Ren X; Song J; Dai Y
    Opt Lett; 2022 Dec; 47(23):6045-6048. PubMed ID: 37219168
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Polyatomic molecules under intense femtosecond laser irradiation.
    Konar A; Shu Y; Lozovoy VV; Jackson JE; Levine BG; Dantus M
    J Phys Chem A; 2014 Dec; 118(49):11433-50. PubMed ID: 25314590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Limitations in ionization-induced compression of femtosecond laser pulses due to spatio-temporal couplings.
    Beaurepaire B; Guénot D; Vernier A; Böhle F; Perrier M; Jullien A; Lopez-Martens R; Lifschitz A; Faure J
    Opt Express; 2016 May; 24(9):9693-705. PubMed ID: 27137583
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Full 3D modelling of pulse propagation enables efficient nonlinear frequency conversion with low energy laser pulses in a single-element tripler.
    Kardaś TM; Nejbauer M; Wnuk P; Resan B; Radzewicz C; Wasylczyk P
    Sci Rep; 2017 Feb; 7():42889. PubMed ID: 28225007
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear absorption of intense femtosecond laser radiation in air.
    Kartashov DV; Kirsanov AV; Kiselev AM; Stepanov AN; Bochkarev NN; Ponomarev YN; Tikhomirov BA
    Opt Express; 2006 Aug; 14(17):7552-8. PubMed ID: 19529121
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Micromachining of bulk glass with bursts of femtosecond laser pulses at variable repetition rates.
    Gattass RR; Cerami LR; Mazur E
    Opt Express; 2006 Jun; 14(12):5279-84. PubMed ID: 19516693
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafast laser photoinscription of polarization sensitive devices in bulk silica glass.
    Cheng G; Mishchik K; Mauclair C; Audouard E; Stoian R
    Opt Express; 2009 Jun; 17(12):9515-25. PubMed ID: 19506599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Femtosecond lasers for high-precision orthopedic surgery.
    Ashforth SA; Oosterbeek RN; Bodley OLC; Mohr C; Aguergaray C; Simpson MC
    Lasers Med Sci; 2020 Aug; 35(6):1263-1270. PubMed ID: 31729610
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Femtosecond laser 3D micromachining: a powerful tool for the fabrication of microfluidic, optofluidic, and electrofluidic devices based on glass.
    Sugioka K; Xu J; Wu D; Hanada Y; Wang Z; Cheng Y; Midorikawa K
    Lab Chip; 2014 Sep; 14(18):3447-58. PubMed ID: 25012238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sub-10 fJ/bit radiation-hard nanoelectromechanical non-volatile memory.
    Lee YB; Kang MH; Choi PK; Kim SH; Kim TS; Lee SY; Yoon JB
    Nat Commun; 2023 Jan; 14(1):460. PubMed ID: 36709346
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic pulse propagation modelling for predictive femtosecond-laser-microbonding of transparent materials.
    Sahoo PK; Feng T; Qiao J
    Opt Express; 2020 Oct; 28(21):31103-31118. PubMed ID: 33115092
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrafast laser processing of materials: from science to industry.
    Malinauskas M; Žukauskas A; Hasegawa S; Hayasaki Y; Mizeikis V; Buividas R; Juodkazis S
    Light Sci Appl; 2016 Aug; 5(8):e16133. PubMed ID: 30167182
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.