BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 31089701)

  • 1. Uptake of D-xylose and L-arabinose in Haloferax volcanii involves an ABC transporter of the CUT1 subfamily.
    Johnsen U; Ortjohann M; Sutter JM; Geweke S; Schönheit P
    FEMS Microbiol Lett; 2019 Apr; 366(8):. PubMed ID: 31089701
    [TBL] [Abstract][Full Text] [Related]  

  • 2. XacR - a novel transcriptional regulator of D-xylose and L-arabinose catabolism in the haloarchaeon Haloferax volcanii.
    Johnsen U; Sutter JM; Schulz AC; Tästensen JB; Schönheit P
    Environ Microbiol; 2015 May; 17(5):1663-76. PubMed ID: 25141768
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of a pentonolactonase involved in D-xylose and L-arabinose catabolism in the haloarchaeon Haloferax volcanii.
    Sutter JM; Johnsen U; Schönheit P
    FEMS Microbiol Lett; 2017 Jul; 364(13):. PubMed ID: 28854683
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Sulfolobus acidocaldarius Transports Pentoses via a Carbohydrate Uptake Transporter 2 (CUT2)-Type ABC Transporter and Metabolizes Them through the Aldolase-Independent Weimberg Pathway.
    Wagner M; Shen L; Albersmeier A; van der Kolk N; Kim S; Cha J; Bräsen C; Kalinowski J; Siebers B; Albers SV
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150511
    [No Abstract]   [Full Text] [Related]  

  • 5. L-Arabinose degradation pathway in the haloarchaeon Haloferax volcanii involves a novel type of L-arabinose dehydrogenase.
    Johnsen U; Sutter JM; Zaiß H; Schönheit P
    Extremophiles; 2013 Nov; 17(6):897-909. PubMed ID: 23949136
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pentose degradation in archaea: Halorhabdus species degrade D-xylose, L-arabinose and D-ribose via bacterial-type pathways.
    Sutter JM; Johnsen U; Reinhardt A; Schönheit P
    Extremophiles; 2020 Sep; 24(5):759-772. PubMed ID: 32761262
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genetic identification of three ABC transporters as essential elements for nitrate respiration in Haloferax volcanii.
    Wanner C; Soppa J
    Genetics; 1999 Aug; 152(4):1417-28. PubMed ID: 10430572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. D-galactose catabolism in archaea: operation of the DeLey-Doudoroff pathway in Haloferax volcanii.
    Tästensen JB; Johnsen U; Reinhardt A; Ortjohann M; Schönheit P
    FEMS Microbiol Lett; 2020 Jan; 367(1):. PubMed ID: 32055827
    [TBL] [Abstract][Full Text] [Related]  

  • 9. l-Rhamnose catabolism in archaea.
    Reinhardt A; Johnsen U; Schönheit P
    Mol Microbiol; 2019 Apr; 111(4):1093-1108. PubMed ID: 30707467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. D-xylose degradation pathway in the halophilic archaeon Haloferax volcanii.
    Johnsen U; Dambeck M; Zaiss H; Fuhrer T; Soppa J; Sauer U; Schönheit P
    J Biol Chem; 2009 Oct; 284(40):27290-303. PubMed ID: 19584053
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The oxidative pentose phosphate pathway in the haloarchaeon Haloferax volcanii involves a novel type of glucose-6-phosphate dehydrogenase--The archaeal Zwischenferment.
    Pickl A; Schönheit P
    FEBS Lett; 2015 Apr; 589(10):1105-11. PubMed ID: 25836736
    [TBL] [Abstract][Full Text] [Related]  

  • 12. d-Ribose Catabolism in Archaea: Discovery of a Novel Oxidative Pathway in
    Johnsen U; Sutter JM; Reinhardt A; Pickl A; Wang R; Xiang H; Schönheit P
    J Bacteriol; 2020 Jan; 202(3):. PubMed ID: 31712277
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Glucose Metabolism and Acetate Switch in Archaea: the Enzymes in Haloferax volcanii.
    Kuprat T; Ortjohann M; Johnsen U; Schönheit P
    J Bacteriol; 2021 Mar; 203(8):. PubMed ID: 33558390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Key Enzymes of the Semiphosphorylative Entner-Doudoroff Pathway in the Haloarchaeon Haloferax volcanii: Characterization of Glucose Dehydrogenase, Gluconate Dehydratase, and 2-Keto-3-Deoxy-6-Phosphogluconate Aldolase.
    Sutter JM; Tästensen JB; Johnsen U; Soppa J; Schönheit P
    J Bacteriol; 2016 Aug; 198(16):2251-62. PubMed ID: 27297879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Understanding Functional Roles of Native Pentose-Specific Transporters for Activating Dormant Pentose Metabolism in Yarrowia lipolytica.
    Ryu S; Trinh CT
    Appl Environ Microbiol; 2018 Feb; 84(3):. PubMed ID: 29150499
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Anaerobic Growth of Haloarchaeon Haloferax volcanii by Denitrification Is Controlled by the Transcription Regulator NarO.
    Hattori T; Shiba H; Ashiki K; Araki T; Nagashima YK; Yoshimatsu K; Fujiwara T
    J Bacteriol; 2016 Jan; 198(7):1077-86. PubMed ID: 26787768
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transcriptional regulation of dimethyl sulfoxide respiration in a haloarchaeon, Haloferax volcanii.
    Qi Q; Ito Y; Yoshimatsu K; Fujiwara T
    Extremophiles; 2016 Jan; 20(1):27-36. PubMed ID: 26507955
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regulated Iron Siderophore Production of the Halophilic Archaeon
    Niessen N; Soppa J
    Biomolecules; 2020 Jul; 10(7):. PubMed ID: 32709147
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conserved active site cysteine residue of archaeal THI4 homolog is essential for thiamine biosynthesis in Haloferax volcanii.
    Hwang S; Cordova B; Chavarria N; Elbanna D; McHugh S; Rojas J; Pfeiffer F; Maupin-Furlow JA
    BMC Microbiol; 2014 Oct; 14():260. PubMed ID: 25348237
    [TBL] [Abstract][Full Text] [Related]  

  • 20. mRNA-specific translation regulation by a ribosome-associated ncRNA in Haloferax volcanii.
    Wyss L; Waser M; Gebetsberger J; Zywicki M; Polacek N
    Sci Rep; 2018 Aug; 8(1):12502. PubMed ID: 30131517
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.