These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
199 related articles for article (PubMed ID: 31089984)
21. Biosynthesis of medium chain length poly(3-hydroxyalkanoates) (mcl PHAs) from cosmetic co-products by Pseudomonas raguenesii sp. nov., isolated from Tetiaroa, French Polynesia. Simon-Colin C; Alain K; Raguénès G; Schmitt S; Kervarec N; Gouin C; Crassous P; Costa B; Guezennec JG Bioresour Technol; 2009 Dec; 100(23):6033-9. PubMed ID: 19632827 [TBL] [Abstract][Full Text] [Related]
22. Efficient production of polyhydroxyalkanoates (PHAs) from Pseudomonas mendocina PSU using a biodiesel liquid waste (BLW) as the sole carbon source. Chanasit W; Hodgson B; Sudesh K; Umsakul K Biosci Biotechnol Biochem; 2016 Jul; 80(7):1440-50. PubMed ID: 26981955 [TBL] [Abstract][Full Text] [Related]
23. Production and characterization of medium-chain-length polyhydroxyalkanoate copolymer from Arctic psychrotrophic bacterium Pseudomonas sp. PAMC 28620. Sathiyanarayanan G; Bhatia SK; Song HS; Jeon JM; Kim J; Lee YK; Kim YG; Yang YH Int J Biol Macromol; 2017 Apr; 97():710-720. PubMed ID: 28108411 [TBL] [Abstract][Full Text] [Related]
24. Screening and identification of polyhydroxyalkanoates producing bacteria and biochemical characterization of their possible application. Sangkharak K; Prasertsan P J Gen Appl Microbiol; 2012; 58(3):173-82. PubMed ID: 22878735 [TBL] [Abstract][Full Text] [Related]
25. Biosynthesis of medium-chain-length poly(3-hydroxyalkanoates) by volatile aromatic hydrocarbons-degrading Pseudomonas fulva TY16. Ni YY; Kim DY; Chung MG; Lee SH; Park HY; Rhee YH Bioresour Technol; 2010 Nov; 101(21):8485-8. PubMed ID: 20591653 [TBL] [Abstract][Full Text] [Related]
26. Glutamine-induced filamentous cells of Pseudomonas mediterranea CFBP-5447T as producers of PHAs. Rizzo MG; Nicolò MS; Franco D; De Plano LM; Chines V; Moscato F; Crea G; Gugliandolo C; Guglielmino SPP Appl Microbiol Biotechnol; 2019 Nov; 103(21-22):9057-9066. PubMed ID: 31659417 [TBL] [Abstract][Full Text] [Related]
29. Polyhydroxyalkanoate (PHA) production using waste vegetable oil by Pseudomonas sp. strain DR2. Song JH; Jeon CO; Choi MH; Yoon SC; Park W J Microbiol Biotechnol; 2008 Aug; 18(8):1408-15. PubMed ID: 18756101 [TBL] [Abstract][Full Text] [Related]
30. Polyhydroxyalkanoates from Pseudomonas sp. using synthetic and olive mill wastewater under limiting conditions. Kourmentza C; Ntaikou I; Lyberatos G; Kornaros M Int J Biol Macromol; 2015 Mar; 74():202-10. PubMed ID: 25542172 [TBL] [Abstract][Full Text] [Related]
31. The diversity of bacteria isolated from antarctic freshwater reservoirs possessing the ability to produce polyhydroxyalkanoates. Ciesielski S; Górniak D; Możejko J; Świątecki A; Grzesiak J; Zdanowski M Curr Microbiol; 2014 Nov; 69(5):594-603. PubMed ID: 24939384 [TBL] [Abstract][Full Text] [Related]
32. Metabolic potential of the moderate halophile Yangia sp. ND199 for co-production of polyhydroxyalkanoates and exopolysaccharides. Romero Soto L; Thabet H; Maghembe R; Gameiro D; Van-Thuoc D; Dishisha T; Hatti-Kaul R Microbiologyopen; 2021 Jan; 10(1):e1160. PubMed ID: 33650793 [TBL] [Abstract][Full Text] [Related]
33. Biosynthesis and characterization of polyhydroxyalkanoates by Pseudomonas guezennei from alkanoates and glucose. Simon-Colin C; Gouin C; Lemechko P; Schmitt S; Senant A; Kervarec N; Guezennec J Int J Biol Macromol; 2012 Dec; 51(5):1063-9. PubMed ID: 22947450 [TBL] [Abstract][Full Text] [Related]
34. Semi-scale production of PHAs from waste frying oil by Pseudomonas fluorescens S48. Gamal RF; Abdelhady HM; Khodair TA; El-Tayeb TS; Hassan EA; Aboutaleb KA Braz J Microbiol; 2013; 44(2):539-49. PubMed ID: 24294253 [TBL] [Abstract][Full Text] [Related]
35. Synthesis Gas (Syngas)-Derived Medium-Chain-Length Polyhydroxyalkanoate Synthesis in Engineered Rhodospirillum rubrum. Heinrich D; Raberg M; Fricke P; Kenny ST; Morales-Gamez L; Babu RP; O'Connor KE; Steinbüchel A Appl Environ Microbiol; 2016 Oct; 82(20):6132-6140. PubMed ID: 27520812 [TBL] [Abstract][Full Text] [Related]
36. Bacterial biopolymer (polyhydroxyalkanoate) production from low-cost sustainable sources. Aljuraifani AA; Berekaa MM; Ghazwani AA Microbiologyopen; 2019 Jun; 8(6):e00755. PubMed ID: 30350356 [TBL] [Abstract][Full Text] [Related]
37. Analysis of Medium-Chain-Length Polyhydroxyalkanoate-Producing Bacteria in Activated Sludge Samples Enriched by Aerobic Periodic Feeding. Lee SH; Kim JH; Chung CW; Kim DY; Rhee YH Microb Ecol; 2018 Apr; 75(3):720-728. PubMed ID: 28993853 [TBL] [Abstract][Full Text] [Related]
38. Organic removal and synthesis of biopolymer from synthetic oily bilge water using the novel mixed bacterial consortium. Uma V; Gandhimathi R Bioresour Technol; 2019 Feb; 273():169-176. PubMed ID: 30445269 [TBL] [Abstract][Full Text] [Related]
39. Synthesis of Medium-Chain-Length Polyhydroxyalkanoate Homopolymers, Random Copolymers, and Block Copolymers by an Engineered Strain of Pseudomonas entomophila. Wang Y; Chung A; Chen GQ Adv Healthc Mater; 2017 Apr; 6(7):. PubMed ID: 28128887 [TBL] [Abstract][Full Text] [Related]
40. Production of Polyhydroxyalkanoates Copolymers by Recombinant Pseudomonas in Plasmid- and Antibiotic-Free Cultures. Oliveira-Filho ER; Guamán LP; Mendonça TT; Long PF; Taciro MK; Gomez JGC; Silva LF J Mol Microbiol Biotechnol; 2018; 28(5):225-235. PubMed ID: 30783060 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]