BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 31090409)

  • 1. Enhancement and Mechanism of a Lignin Amphoteric Surfactant on the Production of Cellulosic Ethanol from a High-Solid Corncob Residue.
    Lou H; He X; Cai C; Lan T; Pang Y; Zhou H; Qiu X
    J Agric Food Chem; 2019 Jun; 67(22):6248-6256. PubMed ID: 31090409
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An alternative feedstock of corn meal for industrial fuel ethanol production: delignified corncob residue.
    Lei C; Zhang J; Xiao L; Bao J
    Bioresour Technol; 2014 Sep; 167():555-9. PubMed ID: 25027810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Pretreatment with γ-Valerolactone/[Mmim]DMP and Enzymatic Hydrolysis on Corncob and Its Application in Immobilized Butyric Acid Fermentation.
    Zheng W; Liu X; Zhu L; Huang H; Wang T; Jiang L
    J Agric Food Chem; 2018 Nov; 66(44):11709-11717. PubMed ID: 30296065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The roles of xylan and lignin in oxalic acid pretreated corncob during separate enzymatic hydrolysis and ethanol fermentation.
    Lee JW; Rodrigues RC; Kim HJ; Choi IG; Jeffries TW
    Bioresour Technol; 2010 Jun; 101(12):4379-85. PubMed ID: 20188541
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing enzymatic hydrolysis of xylan by adding sodium lignosulfonate and long-chain fatty alcohols.
    Lou H; Yuan L; Qiu X; Qiu K; Fu J; Pang Y; Huang J
    Bioresour Technol; 2016 Jan; 200():48-54. PubMed ID: 26476164
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Integrated production of xylitol and ethanol using corncob.
    Cheng KK; Zhang JA; Chavez E; Li JP
    Appl Microbiol Biotechnol; 2010 Jun; 87(2):411-7. PubMed ID: 20424835
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Butanol production from corncob residue using Clostridium beijerinckii NCIMB 8052.
    Zhang WL; Liu ZY; Liu Z; Li FL
    Lett Appl Microbiol; 2012 Sep; 55(3):240-6. PubMed ID: 22738279
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Improving rheology and enzymatic hydrolysis of high-solid corncob slurries by adding lignosulfonate and long-chain fatty alcohols.
    Lou H; Wu S; Li X; Lan T; Yang D; Pang Y; Qiu X; Li X; Huang J
    J Agric Food Chem; 2014 Aug; 62(33):8430-6. PubMed ID: 25111907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Influence of high solid concentration on enzymatic hydrolysis and fermentation of steam-exploded corn stover biomass.
    Lu Y; Wang Y; Xu G; Chu J; Zhuang Y; Zhang S
    Appl Biochem Biotechnol; 2010 Jan; 160(2):360-9. PubMed ID: 18626577
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving enzymatic hydrolysis efficiency of corncob residue through sodium sulfite pretreatment.
    Chen H; Jiang L; Cheng Y; Lu J; Lv Y; Yan J; Wang H
    Appl Microbiol Biotechnol; 2019 Sep; 103(18):7795-7804. PubMed ID: 31388733
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Promoting enzymatic saccharification of organosolv-pretreated poplar sawdust by saponin-rich tea seed waste.
    Lai C; Yang C; Zhao Y; Jia Y; Chen L; Zhou C; Yong Q
    Bioprocess Biosyst Eng; 2020 Nov; 43(11):1999-2007. PubMed ID: 32524279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Accounting for all sugars produced during integrated production of ethanol from lignocellulosic biomass.
    Schell DJ; Dowe N; Chapeaux A; Nelson RS; Jennings EW
    Bioresour Technol; 2016 Apr; 205():153-8. PubMed ID: 26826954
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identifying and overcoming the effect of mass transfer limitation on decreased yield in enzymatic hydrolysis of lignocellulose at high solid concentrations.
    Du J; Cao Y; Liu G; Zhao J; Li X; Qu Y
    Bioresour Technol; 2017 Apr; 229():88-95. PubMed ID: 28110129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient hydrolysis of corncob residue through cellulolytic enzymes from Trichoderma strain G26 and L-lactic acid preparation with the hydrolysate.
    Xie L; Zhao J; Wu J; Gao M; Zhao Z; Lei X; Zhao Y; Yang W; Gao X; Ma C; Liu H; Wu F; Wang X; Zhang F; Guo P; Dai G
    Bioresour Technol; 2015 Oct; 193():331-6. PubMed ID: 26143000
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrolysis of lignocellulosic materials for ethanol production: a review.
    Sun Y; Cheng J
    Bioresour Technol; 2002 May; 83(1):1-11. PubMed ID: 12058826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lignin-grafted quaternary ammonium phosphate with temperature and pH responsive behavior for improved enzymatic hydrolysis and cellulase recovery.
    Li F; Liang H; Shan J; Zhang A; Lou H; Tang Y
    Int J Biol Macromol; 2023 Apr; 234():123779. PubMed ID: 36812966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of lignin-based amphiphilic polymers on the cellulase adsorption and enzymatic hydrolysis kinetics of cellulose.
    Lin X; Wu L; Huang S; Qin Y; Qiu X; Lou H
    Carbohydr Polym; 2019 Mar; 207():52-58. PubMed ID: 30600035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Simultaneous improvement of saccharification and ethanol production from crystalline cellulose by alleviation of irreversible adsorption of cellulase with a cell surface-engineered yeast strain.
    Matano Y; Hasunuma T; Kondo A
    Appl Microbiol Biotechnol; 2013 Mar; 97(5):2231-7. PubMed ID: 23184221
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The promoting effects of manganese on biological pretreatment with Irpex lacteus and enzymatic hydrolysis of corn stover.
    Song L; Ma F; Zeng Y; Zhang X; Yu H
    Bioresour Technol; 2013 May; 135():89-92. PubMed ID: 23069603
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solid state fermentation and crude cellulase based bioconversion of potential bamboo biomass to reducing sugar for bioenergy production.
    Pandey RK; Chand K; Tewari L
    J Sci Food Agric; 2018 Sep; 98(12):4411-4419. PubMed ID: 29435990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.