These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

77 related articles for article (PubMed ID: 31090735)

  • 1. Contactless online characterization of large-area conductive thin films by thermography and induction.
    Remes K; Järvenpää A; Fabritius T
    Opt Lett; 2019 May; 44(10):2574-2577. PubMed ID: 31090735
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermography based online characterization of conductive thin films in large-scale electronics fabrication.
    Remes K; Leppänen K; Fabritius T
    Opt Express; 2018 Jan; 26(2):1219-1229. PubMed ID: 29401998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical heating synchronized with IR imaging to determine thin film defects.
    Leppänen K; Saarela J; Myllylä R; Fabritius T
    Opt Express; 2013 Dec; 21(26):32358-70. PubMed ID: 24514828
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly stretchable wrinkled gold thin film wires.
    Kim J; Park SJ; Nguyen T; Chu M; Pegan JD; Khine M
    Appl Phys Lett; 2016 Feb; 108(6):061901. PubMed ID: 26937042
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Electronic Devices Based on Oxide Thin Films Fabricated by Fiber-to-Film Process.
    Meng Y; Liu A; Guo Z; Liu G; Shin B; Noh YY; Fortunato E; Martins R; Shan F
    ACS Appl Mater Interfaces; 2018 May; 10(21):18057-18065. PubMed ID: 29733184
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Conductivity Extraction Using a 180 GHz Quasi-Optical Resonator for Conductive Thin Film Deposited on Conductive Substrate.
    Ye M; Zhao XL; Li WD; Zhou Y; Chen JY; He YN
    Materials (Basel); 2020 Nov; 13(22):. PubMed ID: 33233851
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Highly Conductive Transparent and Flexible Electrodes Including Double-Stacked Thin Metal Films for Transparent Flexible Electronics.
    Han JH; Kim DH; Jeong EG; Lee TW; Lee MK; Park JW; Lee H; Choi KC
    ACS Appl Mater Interfaces; 2017 May; 9(19):16343-16350. PubMed ID: 28447446
    [TBL] [Abstract][Full Text] [Related]  

  • 8. APCVD hexagonal boron nitride thin films for passive near-junction thermal management of electronics.
    Kc P; Rai A; Ashton TS; Moore AL
    Nanotechnology; 2017 Dec; 28(50):505705. PubMed ID: 29095146
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Highly Conductive and Transparent Reduced Graphene Oxide Nanoscale Films via Thermal Conversion of Polymer-Encapsulated Graphene Oxide Sheets.
    Savchak M; Borodinov N; Burtovyy R; Anayee M; Hu K; Ma R; Grant A; Li H; Cutshall DB; Wen Y; Koley G; Harrell WR; Chumanov G; Tsukruk V; Luzinov I
    ACS Appl Mater Interfaces; 2018 Jan; 10(4):3975-3985. PubMed ID: 29286620
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-Temperature Postfunctionalization of Highly Conductive Oxide Thin-Films toward Solution-Based Large-Scale Electronics.
    Ban SG; Kim KT; Choi BD; Jo JW; Kim YH; Facchetti A; Kim MG; Park SK
    ACS Appl Mater Interfaces; 2017 Aug; 9(31):26191-26200. PubMed ID: 28726385
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Highly Conductive Graphene and Polyelectrolyte Multilayer Thin Films Produced From Aqueous Suspension.
    Stevens B; Guin T; Sarwar O; John A; Paton KR; Coleman JN; Grunlan JC
    Macromol Rapid Commun; 2016 Nov; 37(22):1790-1794. PubMed ID: 27673687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of conductive polymer nanofibers through SWNT supramolecular functionalization and aqueous solution processing.
    Naeem F; Prestayko R; Saem S; Nowicki L; Imit M; Adronov A; Moran-Mirabal JM
    Nanotechnology; 2015 Oct; 26(39):395301. PubMed ID: 26351867
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Recent Development of Carbon Nanotube Transparent Conductive Films.
    Yu L; Shearer C; Shapter J
    Chem Rev; 2016 Nov; 116(22):13413-13453. PubMed ID: 27704787
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Low-temperature preparation of highly conductive thin films from acrylic acid-stabilized silver nanoparticles prepared through ligand exchange.
    Vo DQ; Shin EW; Kim JS; Kim S
    Langmuir; 2010 Nov; 26(22):17435-43. PubMed ID: 20919702
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Online measurement of conductivity/permittivity of fluid by a new contactless impedance sensor.
    Wang YX; Ji HF; Huang ZY; Wang BL; Li HQ
    Rev Sci Instrum; 2017 May; 88(5):055111. PubMed ID: 28571398
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photocatalytic and conductive MWCNT/TiO2 nanocomposite thin films.
    Tettey KE; Yee MQ; Lee D
    ACS Appl Mater Interfaces; 2010 Sep; 2(9):2646-52. PubMed ID: 20722418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of electrical-erosion instrument for direct write micro-patterning on large area conductive thin films.
    Álvarez ÁL; Coya C; García-Vélez M
    Rev Sci Instrum; 2015 Aug; 86(8):084704. PubMed ID: 26329218
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the sintering of solution-based silver nanoparticle thin-films for sprayed and flexible antennas.
    Bobinger M; Haider M; Goliya Y; Albrecht A; Becherer M; Lugli P; Rivadeneyra A; Russer J
    Nanotechnology; 2018 Nov; 29(48):485701. PubMed ID: 30207543
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Assembly and benign step-by-step post-treatment of oppositely charged reduced graphene oxides for transparent conductive thin films with multiple applications.
    Zhu J; He J
    Nanoscale; 2012 Jun; 4(11):3558-66. PubMed ID: 22573099
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Thermal characterization of thin films via dynamic infrared thermography.
    Greppmair A; Galfe N; Amend K; Stutzmann M; Brandt MS
    Rev Sci Instrum; 2019 Apr; 90(4):044903. PubMed ID: 31043019
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.