BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 31090816)

  • 1. Cytoarchitecture of the superior olivary complex of three neotropical species of bats (Noctilio leporinus, Phyllostomus hastatus and Carollia perspicillata) with different foraging behavior.
    Gibbons I; Sundaram V; Adogwa A; Odekunle A
    Braz J Biol; 2020; 80(1):180-186. PubMed ID: 31090816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cytoarchitecture of the medial nucleus of trapezoid body of three neotropical species of bats (Noctilio leporinus, Phyllostomus hastatus, and Carollia perspicillata) with different foraging behavior.
    Gibbons I; Sundaram V; Adogwa A; Odekunle A
    Braz J Biol; 2021; 81(4):909-916. PubMed ID: 33084736
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sound-localization acuity and its relation to vision in large and small fruit-eating bats: I. Echolocating species, Phyllostomus hastatus and Carollia perspicillata.
    Heffner RS; Koay G; Heffner HE
    Hear Res; 2007 Dec; 234(1-2):1-9. PubMed ID: 17630232
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structure and function of the bat superior olivary complex.
    Grothe B; Park TJ
    Microsc Res Tech; 2000 Nov; 51(4):382-402. PubMed ID: 11071721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Binaural properties of single units in the superior olivary complex of the mustached bat.
    Covey E; Vater M; Casseday JH
    J Neurophysiol; 1991 Sep; 66(3):1080-94. PubMed ID: 1721651
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Echolocation call intensity and directionality in flying short-tailed fruit bats, Carollia perspicillata (Phyllostomidae).
    Brinkløv S; Jakobsen L; Ratcliffe JM; Kalko EK; Surlykke A
    J Acoust Soc Am; 2011 Jan; 129(1):427-35. PubMed ID: 21303022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Morphology and unbiased stereology of the lateral superior olive in the short-beaked common dolphin, Delphinus delphis (Cetacea, Delphinidae).
    Nieder C; Rosene DL; Mortazavi F; Oblak AL; Ketten DR
    J Morphol; 2022 Apr; 283(4):446-461. PubMed ID: 35066941
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Anatomy and projection patterns of the superior olivary complex in the Mexican free-tailed bat, Tadarida brasiliensis mexicana.
    Grothe B; Schweizer H; Pollak GD; Schuller G; Rosemann C
    J Comp Neurol; 1994 May; 343(4):630-46. PubMed ID: 8034792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The frugivorous bat
    Beetz MJ; Kössl M; Hechavarría JC
    J Exp Biol; 2021 Mar; 224(Pt 6):. PubMed ID: 33568443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of binaural cues for sound localization in two species of Phyllostomidae: the Greater spear-nosed bat (Phyllostomus hastatus) and the Short-tailed fruit bat (Carollia perspicillata).
    Heffner RS; Koay G; Heffner HE
    J Comp Psychol; 2010 Nov; 124(4):447-54. PubMed ID: 21090890
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Medial superior olive of the big brown bat: neuronal responses to pure tones, amplitude modulations, and pulse trains.
    Grothe B; Covey E; Casseday JH
    J Neurophysiol; 2001 Nov; 86(5):2219-30. PubMed ID: 11698513
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interaural time and intensity coding in superior olivary complex and inferior colliculus of the echolocating bat Molossus ater.
    Harnischfeger G; Neuweiler G; Schlegel P
    J Neurophysiol; 1985 Jan; 53(1):89-109. PubMed ID: 3973664
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Sensory challenges for trawling bats: Finding transient prey on water surfaces.
    Übernickel K; Simon R; Kalko EK; Tschapka M
    J Acoust Soc Am; 2016 Apr; 139(4):1914. PubMed ID: 27106338
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optic and echo-acoustic flow interact in bats.
    Kugler K; Luksch H; Peremans H; Vanderelst D; Wiegrebe L; Firzlaff U
    J Exp Biol; 2019 Mar; 222(Pt 6):. PubMed ID: 30728158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Auditory scene analysis by echolocation in bats.
    Moss CF; Surlykke A
    J Acoust Soc Am; 2001 Oct; 110(4):2207-26. PubMed ID: 11681397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptations for Substrate Gleaning in Bats: The Pallid Bat as a Case Study.
    Razak KA
    Brain Behav Evol; 2018; 91(2):97-108. PubMed ID: 29874652
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Echolocating bats prefer a high risk-high gain foraging strategy to increase prey profitability.
    Stidsholt L; Hubancheva A; Greif S; Goerlitz HR; Johnson M; Yovel Y; Madsen PT
    Elife; 2023 Apr; 12():. PubMed ID: 37070239
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural arrangement of auditory brainstem nuclei in the bats Phyllostomus discolor and Carollia perspicillata.
    Pätz C; Console-Meyer L; Felmy F
    J Comp Neurol; 2022 Oct; 530(15):2762-2781. PubMed ID: 35703441
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Coordinated Control of Acoustical Field of View and Flight in Three-Dimensional Space for Consecutive Capture by Echolocating Bats during Natural Foraging.
    Sumiya M; Fujioka E; Motoi K; Kondo M; Hiryu S
    PLoS One; 2017; 12(1):e0169995. PubMed ID: 28085936
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bats are unusually insensitive to brief low-frequency tones.
    Heffner RS; Koay G; Heffner HE
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2019 Aug; 205(4):583-594. PubMed ID: 31147738
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.