These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 31091097)

  • 1. From Molecular Fragments to the Bulk: Development of a Neural Network Potential for MOF-5.
    Eckhoff M; Behler J
    J Chem Theory Comput; 2019 Jun; 15(6):3793-3809. PubMed ID: 31091097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A neural network potential for the IRMOF series and its application for thermal and mechanical behaviors.
    Tayfuroglu O; Kocak A; Zorlu Y
    Phys Chem Chem Phys; 2022 May; 24(19):11882-11897. PubMed ID: 35510633
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toward Fast and Reliable Potential Energy Surfaces for Metallic Pt Clusters by Hierarchical Delta Neural Networks.
    Sun G; Sautet P
    J Chem Theory Comput; 2019 Oct; 15(10):5614-5627. PubMed ID: 31465216
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning transferable atomic forces for large systems from underconverged molecular fragments.
    Herbold M; Behler J
    Phys Chem Chem Phys; 2023 May; 25(18):12979-12989. PubMed ID: 37165873
    [TBL] [Abstract][Full Text] [Related]  

  • 6. General-Purpose Machine Learning Potentials Capturing Nonlocal Charge Transfer.
    Ko TW; Finkler JA; Goedecker S; Behler J
    Acc Chem Res; 2021 Feb; 54(4):808-817. PubMed ID: 33513012
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Parallel Multistream Training of High-Dimensional Neural Network Potentials.
    Singraber A; Morawietz T; Behler J; Dellago C
    J Chem Theory Comput; 2019 May; 15(5):3075-3092. PubMed ID: 30995035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Hessian-based assessment of atomic forces for training machine learning interatomic potentials.
    Herbold M; Behler J
    J Chem Phys; 2022 Mar; 156(11):114106. PubMed ID: 35317596
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Four Generations of High-Dimensional Neural Network Potentials.
    Behler J
    Chem Rev; 2021 Aug; 121(16):10037-10072. PubMed ID: 33779150
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of structure and properties of molecular crystals from first principles.
    Szalewicz K
    Acc Chem Res; 2014 Nov; 47(11):3266-74. PubMed ID: 25354310
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Transferable Neural Network Potential Energy Surfaces for Closed-Shell Organic Molecules: Extension to Ions.
    Jacobson LD; Stevenson JM; Ramezanghorbani F; Ghoreishi D; Leswing K; Harder ED; Abel R
    J Chem Theory Comput; 2022 Apr; 18(4):2354-2366. PubMed ID: 35290063
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learnt bond order potential to model metal-organic (Co-C) heterostructures.
    Narayanan B; Chan H; Kinaci A; Sen FG; Gray SK; Chan MKY; Sankaranarayanan SKRS
    Nanoscale; 2017 Nov; 9(46):18229-18239. PubMed ID: 29043353
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Consistent structures and interactions by density functional theory with small atomic orbital basis sets.
    Grimme S; Brandenburg JG; Bannwarth C; Hansen A
    J Chem Phys; 2015 Aug; 143(5):054107. PubMed ID: 26254642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing the accuracy of high-dimensional neural network potentials and the systematic molecular fragmentation method: A benchmark study for all-trans alkanes.
    Gastegger M; Kauffmann C; Behler J; Marquetand P
    J Chem Phys; 2016 May; 144(19):194110. PubMed ID: 27208939
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optimization and validation of a deep learning CuZr atomistic potential: Robust applications for crystalline and amorphous phases with near-DFT accuracy.
    Andolina CM; Williamson P; Saidi WA
    J Chem Phys; 2020 Apr; 152(15):154701. PubMed ID: 32321274
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Prediction of optoelectronic properties of Cu
    Selvaratnam B; Koodali RT; Miró P
    Phys Chem Chem Phys; 2020 Jul; 22(26):14910-14917. PubMed ID: 32584353
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning interatomic potential for silicon-nitride (Si3N4) by active learning.
    Milardovich D; Wilhelmer C; Waldhoer D; Cvitkovich L; Sivaraman G; Grasser T
    J Chem Phys; 2023 May; 158(19):. PubMed ID: 37184017
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Constructing simple yet accurate potentials for describing the solvation of HCl/water clusters in bulk helium and nanodroplets.
    Boese AD; Forbert H; Masia M; Tekin A; Marx D; Jansen G
    Phys Chem Chem Phys; 2011 Aug; 13(32):14550-64. PubMed ID: 21687854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Representing potential energy surfaces by high-dimensional neural network potentials.
    Behler J
    J Phys Condens Matter; 2014 May; 26(18):183001. PubMed ID: 24758952
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Halide-induced Step Faceting and Dissolution Energetics from Atomistic Machine Learned Potentials on Cu(100).
    Groenenboom MC; Moffat TP; Schwarz KA
    J Phys Chem C Nanomater Interfaces; 2020; 124(23):. PubMed ID: 34194601
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.