BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 31091097)

  • 21. Geometrical correction for the inter- and intramolecular basis set superposition error in periodic density functional theory calculations.
    Brandenburg JG; Alessio M; Civalleri B; Peintinger MF; Bredow T; Grimme S
    J Phys Chem A; 2013 Sep; 117(38):9282-92. PubMed ID: 23947824
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Iterative training set refinement enables reactive molecular dynamics
    Chen L; Sukuba I; Probst M; Kaiser A
    RSC Adv; 2020 Jan; 10(8):4293-4299. PubMed ID: 35495270
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-Dimensional Neural Network Potentials for Accurate Prediction of Equation of State: A Case Study of Methane.
    Abedi M; Behler J; Goldsmith CF
    J Chem Theory Comput; 2023 Nov; 19(21):7825-7832. PubMed ID: 37902963
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Transferable Dynamic Molecular Charge Assignment Using Deep Neural Networks.
    Nebgen B; Lubbers N; Smith JS; Sifain AE; Lokhov A; Isayev O; Roitberg AE; Barros K; Tretiak S
    J Chem Theory Comput; 2018 Sep; 14(9):4687-4698. PubMed ID: 30064217
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Modelling organic crystal structures using distributed multipole and polarizability-based model intermolecular potentials.
    Price SL; Leslie M; Welch GW; Habgood M; Price LS; Karamertzanis PG; Day GM
    Phys Chem Chem Phys; 2010 Aug; 12(30):8478-90. PubMed ID: 20607186
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Parameter-Free and Electron Counting Satisfied Material Representation for Machine Learning Potential Energy and Force Fields.
    Xi B; Chan MK; Bao K; Zhao W; Chan HM; Chen H; Zhu J
    J Phys Chem Lett; 2024 Feb; 15(6):1636-1643. PubMed ID: 38306617
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Machine learning interatomic potential developed for molecular simulations on thermal properties of β-Ga
    Liu YB; Yang JY; Xin GM; Liu LH; Csányi G; Cao BY
    J Chem Phys; 2020 Oct; 153(14):144501. PubMed ID: 33086840
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Calculations on noncovalent interactions and databases of benchmark interaction energies.
    Hobza P
    Acc Chem Res; 2012 Apr; 45(4):663-72. PubMed ID: 22225511
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Active and Transfer Learning of High-Dimensional Neural Network Potentials for Transition Metals.
    Varughese B; Manna S; Loeffler TD; Batra R; Cherukara MJ; Sankaranarayanan SKRS
    ACS Appl Mater Interfaces; 2024 Apr; ():. PubMed ID: 38593033
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Transferable next-generation force fields from simple liquids to complex materials.
    Schmidt JR; Yu K; McDaniel JG
    Acc Chem Res; 2015 Mar; 48(3):548-56. PubMed ID: 25688596
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Accurate lattice energies of organic molecular crystals from periodic turbomole calculations.
    Buchholz HK; Stein M
    J Comput Chem; 2018 Jul; 39(19):1335-1343. PubMed ID: 29504133
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A density-functional theory-based neural network potential for water clusters including van der Waals corrections.
    Morawietz T; Behler J
    J Phys Chem A; 2013 Aug; 117(32):7356-66. PubMed ID: 23557541
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Validation of molecular crystal structures from powder diffraction data with dispersion-corrected density functional theory (DFT-D).
    van de Streek J; Neumann MA
    Acta Crystallogr B Struct Sci Cryst Eng Mater; 2014 Dec; 70(Pt 6):1020-32. PubMed ID: 25449625
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Redox potentials and acidity constants from density functional theory based molecular dynamics.
    Cheng J; Liu X; VandeVondele J; Sulpizi M; Sprik M
    Acc Chem Res; 2014 Dec; 47(12):3522-9. PubMed ID: 25365148
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Surface Termination of the Metal-Organic Framework HKUST-1: A Theoretical Investigation.
    Amirjalayer S; Tafipolsky M; Schmid R
    J Phys Chem Lett; 2014 Sep; 5(18):3206-10. PubMed ID: 26276333
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A neural network potential-energy surface for the water dimer based on environment-dependent atomic energies and charges.
    Morawietz T; Sharma V; Behler J
    J Chem Phys; 2012 Feb; 136(6):064103. PubMed ID: 22360165
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Atom-centered symmetry functions for constructing high-dimensional neural network potentials.
    Behler J
    J Chem Phys; 2011 Feb; 134(7):074106. PubMed ID: 21341827
    [TBL] [Abstract][Full Text] [Related]  

  • 38. BAND NN: A Deep Learning Framework for Energy Prediction and Geometry Optimization of Organic Small Molecules.
    Laghuvarapu S; Pathak Y; Priyakumar UD
    J Comput Chem; 2020 Mar; 41(8):790-799. PubMed ID: 31845368
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An accurate interatomic potential for the TiAlNb ternary alloy developed by deep neural network learning method.
    Lu J; Wang J; Wan K; Chen Y; Wang H; Shi X
    J Chem Phys; 2023 May; 158(20):. PubMed ID: 37212410
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Construction of high-dimensional neural network potentials using environment-dependent atom pairs.
    Jose KV; Artrith N; Behler J
    J Chem Phys; 2012 May; 136(19):194111. PubMed ID: 22612084
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.