BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 31091234)

  • 1. Beyond core object recognition: Recurrent processes account for object recognition under occlusion.
    Rajaei K; Mohsenzadeh Y; Ebrahimpour R; Khaligh-Razavi SM
    PLoS Comput Biol; 2019 May; 15(5):e1007001. PubMed ID: 31091234
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Large-Scale, High-Resolution Comparison of the Core Visual Object Recognition Behavior of Humans, Monkeys, and State-of-the-Art Deep Artificial Neural Networks.
    Rajalingham R; Issa EB; Bashivan P; Kar K; Schmidt K; DiCarlo JJ
    J Neurosci; 2018 Aug; 38(33):7255-7269. PubMed ID: 30006365
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Unsupervised changes in core object recognition behavior are predicted by neural plasticity in inferior temporal cortex.
    Jia X; Hong H; DiCarlo JJ
    Elife; 2021 Jun; 10():. PubMed ID: 34114566
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction between Scene and Object Processing Revealed by Human fMRI and MEG Decoding.
    Brandman T; Peelen MV
    J Neurosci; 2017 Aug; 37(32):7700-7710. PubMed ID: 28687603
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The attentive reconstruction of objects facilitates robust object recognition.
    Ahn S; Adeli H; Zelinsky GJ
    PLoS Comput Biol; 2024 Jun; 20(6):e1012159. PubMed ID: 38870125
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Recurrent Connections in the Primate Ventral Visual Stream Mediate a Trade-Off Between Task Performance and Network Size During Core Object Recognition.
    Nayebi A; Sagastuy-Brena J; Bear DM; Kar K; Kubilius J; Ganguli S; Sussillo D; DiCarlo JJ; Yamins DLK
    Neural Comput; 2022 Jul; 34(8):1652-1675. PubMed ID: 35798321
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unveiling the neural dynamics of conscious perception in rapid object recognition.
    Motlagh SC; Joanisse M; Wang B; Mohsenzadeh Y
    Neuroimage; 2024 Aug; 296():120668. PubMed ID: 38848982
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The evolution of meaning: spatio-temporal dynamics of visual object recognition.
    Clarke A; Taylor KI; Tyler LK
    J Cogn Neurosci; 2011 Aug; 23(8):1887-99. PubMed ID: 20617883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A neurocomputational model of decision and confidence in object recognition task.
    Roshan SS; Sadeghnejad N; Sharifizadeh F; Ebrahimpour R
    Neural Netw; 2024 Jul; 175():106318. PubMed ID: 38643618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Common Object Representations for Visual Production and Recognition.
    Fan JE; Yamins DLK; Turk-Browne NB
    Cogn Sci; 2018 Nov; 42(8):2670-2698. PubMed ID: 30125986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The limits of feedforward vision: recurrent processing promotes robust object recognition when objects are degraded.
    Wyatte D; Curran T; O'Reilly R
    J Cogn Neurosci; 2012 Nov; 24(11):2248-61. PubMed ID: 22905822
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fast Recurrent Processing via Ventrolateral Prefrontal Cortex Is Needed by the Primate Ventral Stream for Robust Core Visual Object Recognition.
    Kar K; DiCarlo JJ
    Neuron; 2021 Jan; 109(1):164-176.e5. PubMed ID: 33080226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Predicting the Time Course of Individual Objects with MEG.
    Clarke A; Devereux BJ; Randall B; Tyler LK
    Cereb Cortex; 2015 Oct; 25(10):3602-12. PubMed ID: 25209607
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Recurrent processing improves occluded object recognition and gives rise to perceptual hysteresis.
    Ernst MR; Burwick T; Triesch J
    J Vis; 2021 Dec; 21(13):6. PubMed ID: 34905052
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of human dynamic object recognition revealed by sequential deep neural networks.
    Sörensen LKA; Bohté SM; de Jong D; Slagter HA; Scholte HS
    PLoS Comput Biol; 2023 Jun; 19(6):e1011169. PubMed ID: 37294830
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Crowding in humans is unlike that in convolutional neural networks.
    Lonnqvist B; Clarke ADF; Chakravarthi R
    Neural Netw; 2020 Jun; 126():262-274. PubMed ID: 32272430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beyond the feedforward sweep: feedback computations in the visual cortex.
    Kreiman G; Serre T
    Ann N Y Acad Sci; 2020 Mar; 1464(1):222-241. PubMed ID: 32112444
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Invariant recognition drives neural representations of action sequences.
    Tacchetti A; Isik L; Poggio T
    PLoS Comput Biol; 2017 Dec; 13(12):e1005859. PubMed ID: 29253864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A dual role of prestimulus spontaneous neural activity in visual object recognition.
    Podvalny E; Flounders MW; King LE; Holroyd T; He BJ
    Nat Commun; 2019 Sep; 10(1):3910. PubMed ID: 31477706
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Age-related changes in the neural dynamics of bottom-up and top-down processing during visual object recognition: an electrophysiological investigation.
    Lai LY; Frömer R; Festa EK; Heindel WC
    Neurobiol Aging; 2020 Oct; 94():38-49. PubMed ID: 32562874
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.