BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 31091408)

  • 1. Design and Evaluation of Synthetic Terminators for Regulating Mammalian Cell Transgene Expression.
    Cheng JK; Morse NJ; Wagner JM; Tucker SK; Alper HS
    ACS Synth Biol; 2019 Jun; 8(6):1263-1275. PubMed ID: 31091408
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expanding the Toolbox of Broad Host-Range Transcriptional Terminators for Proteobacteria through Metagenomics.
    Amarelle V; Sanches-Medeiros A; Silva-Rocha R; Guazzaroni ME
    ACS Synth Biol; 2019 Apr; 8(4):647-654. PubMed ID: 30943009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel Utilization of Terminators in the Design of Biologically Adjustable Synthetic Filters.
    Lin MT; Wang CY; Xie HJ; Cheung CH; Hsieh CH; Juan HF; Chen BS; Lin C
    ACS Synth Biol; 2016 May; 5(5):365-74. PubMed ID: 26912179
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The synthetic biology toolbox for tuning gene expression in yeast.
    Redden H; Morse N; Alper HS
    FEMS Yeast Res; 2015 Feb; 15(1):1-10. PubMed ID: 25047958
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of Terminators in Saccharomyces cerevisiae and an Exploration of Factors Affecting Their Strength.
    Wei L; Wang Z; Zhang G; Ye B
    Chembiochem; 2017 Dec; 18(24):2422-2427. PubMed ID: 29058813
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of 582 natural and synthetic terminators and quantification of their design constraints.
    Chen YJ; Liu P; Nielsen AA; Brophy JA; Clancy K; Peterson T; Voigt CA
    Nat Methods; 2013 Jul; 10(7):659-64. PubMed ID: 23727987
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Exchange of endogenous and heterogeneous yeast terminators in Pichia pastoris to tune mRNA stability and gene expression.
    Ito Y; Terai G; Ishigami M; Hashiba N; Nakamura Y; Bamba T; Kumokita R; Hasunuma T; Asai K; Ishii J; Kondo A
    Nucleic Acids Res; 2020 Dec; 48(22):13000-13012. PubMed ID: 33257988
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Promoter and Terminator Discovery and Engineering.
    Deaner M; Alper HS
    Adv Biochem Eng Biotechnol; 2018; 162():21-44. PubMed ID: 27277391
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Use of expression-enhancing terminators in Saccharomyces cerevisiae to increase mRNA half-life and improve gene expression control for metabolic engineering applications.
    Curran KA; Karim AS; Gupta A; Alper HS
    Metab Eng; 2013 Sep; 19():88-97. PubMed ID: 23856240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. EcoFlex: A Multifunctional MoClo Kit for E. coli Synthetic Biology.
    Lai HE; Moore S; Polizzi K; Freemont P
    Methods Mol Biol; 2018; 1772():429-444. PubMed ID: 29754244
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematic transfer of prokaryotic sensors and circuits to mammalian cells.
    Stanton BC; Siciliano V; Ghodasara A; Wroblewska L; Clancy K; Trefzer AC; Chesnut JD; Weiss R; Voigt CA
    ACS Synth Biol; 2014 Dec; 3(12):880-91. PubMed ID: 25360681
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design of Synthetic Promoters for Gene Circuits in Mammalian Cells.
    Saxena P; Bojar D; Fussenegger M
    Methods Mol Biol; 2017; 1651():263-273. PubMed ID: 28801913
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revealing frequent alternative polyadenylation and widespread low-level transcription read-through of novel plant transcription terminators.
    Xing A; Moon BP; Mills KM; Falco SC; Li Z
    Plant Biotechnol J; 2010 Sep; 8(7):772-82. PubMed ID: 20331530
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Short Synthetic Terminators for Assembly of Transcription Units in Vitro and Stable Chromosomal Integration in Yeast S. cerevisiae.
    MacPherson M; Saka Y
    ACS Synth Biol; 2017 Jan; 6(1):130-138. PubMed ID: 27529501
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short Synthetic Terminators for Improved Heterologous Gene Expression in Yeast.
    Curran KA; Morse NJ; Markham KA; Wagman AM; Gupta A; Alper HS
    ACS Synth Biol; 2015 Jul; 4(7):824-32. PubMed ID: 25686303
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterizing standard genetic parts and establishing common principles for engineering legume and cereal roots.
    Feike D; Korolev AV; Soumpourou E; Murakami E; Reid D; Breakspear A; Rogers C; Radutoiu S; Stougaard J; Harwood WA; Oldroyd GED; Miller JB
    Plant Biotechnol J; 2019 Dec; 17(12):2234-2245. PubMed ID: 31022324
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative Analyses of Core Promoters Enable Precise Engineering of Regulated Gene Expression in Mammalian Cells.
    Ede C; Chen X; Lin MY; Chen YY
    ACS Synth Biol; 2016 May; 5(5):395-404. PubMed ID: 26883397
    [TBL] [Abstract][Full Text] [Related]  

  • 18. 6-hydroxy-nicotine-inducible multilevel transgene control in mammalian cells.
    Malphettes L; Schoenmakers RG; Fussenegger M
    Metab Eng; 2006 Nov; 8(6):543-53. PubMed ID: 16962351
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In silico characterization of DNA motifs with particular reference to promoters and terminators.
    Lavigne R; Villegas A; Kropinksi AM
    Methods Mol Biol; 2009; 502():113-29. PubMed ID: 19082554
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modular Synthetic Biology Toolkit for Filamentous Fungi.
    Mózsik L; Pohl C; Meyer V; Bovenberg RAL; Nygård Y; Driessen AJM
    ACS Synth Biol; 2021 Nov; 10(11):2850-2861. PubMed ID: 34726388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.