These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

218 related articles for article (PubMed ID: 31091441)

  • 21. Drosophila Neprilysins Are Involved in Middle-Term and Long-Term Memory.
    Turrel O; Lampin-Saint-Amaux A; Préat T; Goguel V
    J Neurosci; 2016 Sep; 36(37):9535-46. PubMed ID: 27629706
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Different kenyon cell populations drive learned approach and avoidance in Drosophila.
    Perisse E; Yin Y; Lin AC; Lin S; Huetteroth W; Waddell S
    Neuron; 2013 Sep; 79(5):945-56. PubMed ID: 24012007
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The role of dopamine in Drosophila larval classical olfactory conditioning.
    Selcho M; Pauls D; Han KA; Stocker RF; Thum AS
    PLoS One; 2009 Jun; 4(6):e5897. PubMed ID: 19521527
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Three dopamine pathways induce aversive odor memories with different stability.
    Aso Y; Herb A; Ogueta M; Siwanowicz I; Templier T; Friedrich AB; Ito K; Scholz H; Tanimoto H
    PLoS Genet; 2012; 8(7):e1002768. PubMed ID: 22807684
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The neural circuit linking mushroom body parallel circuits induces memory consolidation in
    Awata H; Takakura M; Kimura Y; Iwata I; Masuda T; Hirano Y
    Proc Natl Acad Sci U S A; 2019 Aug; 116(32):16080-16085. PubMed ID: 31337675
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Predictive olfactory learning in Drosophila.
    Zhao C; Widmer YF; Diegelmann S; Petrovici MA; Sprecher SG; Senn W
    Sci Rep; 2021 Mar; 11(1):6795. PubMed ID: 33762640
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Aversive Training Induces Both Presynaptic and Postsynaptic Suppression in
    Zhang X; Noyes NC; Zeng J; Li Y; Davis RL
    J Neurosci; 2019 Nov; 39(46):9164-9172. PubMed ID: 31558620
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Circuits that encode and guide alcohol-associated preference.
    Scaplen KM; Talay M; Nunez KM; Salamon S; Waterman AG; Gang S; Song SL; Barnea G; Kaun KR
    Elife; 2020 Jun; 9():. PubMed ID: 32497004
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Olfactory learning skews mushroom body output pathways to steer behavioral choice in Drosophila.
    Owald D; Waddell S
    Curr Opin Neurobiol; 2015 Dec; 35():178-84. PubMed ID: 26496148
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Upregulated energy metabolism in the Drosophila mushroom body is the trigger for long-term memory.
    Plaçais PY; de Tredern É; Scheunemann L; Trannoy S; Goguel V; Han KA; Isabel G; Preat T
    Nat Commun; 2017 Jun; 8():15510. PubMed ID: 28580949
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bridging behavior and physiology: ion-channel perspective on mushroom body-dependent olfactory learning and memory in Drosophila.
    Gasque G; Labarca P; Delgado R; Darszon A
    J Cell Physiol; 2006 Dec; 209(3):1046-53. PubMed ID: 16924658
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of Dopaminergic Neurons That Can Both Establish Associative Memory and Acutely Terminate Its Behavioral Expression.
    Schleyer M; Weiglein A; Thoener J; Strauch M; Hartenstein V; Kantar Weigelt M; Schuller S; Saumweber T; Eichler K; Rohwedder A; Merhof D; Zlatic M; Thum AS; Gerber B
    J Neurosci; 2020 Jul; 40(31):5990-6006. PubMed ID: 32586949
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Writing memories with light-addressable reinforcement circuitry.
    Claridge-Chang A; Roorda RD; Vrontou E; Sjulson L; Li H; Hirsh J; Miesenböck G
    Cell; 2009 Oct; 139(2):405-15. PubMed ID: 19837039
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mushroom body output differentiates memory processes and distinct memory-guided behaviors.
    Ichinose T; Kanno M; Wu H; Yamagata N; Sun H; Abe A; Tanimoto H
    Curr Biol; 2021 Mar; 31(6):1294-1302.e4. PubMed ID: 33476556
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Visualization of a Distributed Synaptic Memory Code in the Drosophila Brain.
    Bilz F; Geurten BRH; Hancock CE; Widmann A; Fiala A
    Neuron; 2020 Jun; 106(6):963-976.e4. PubMed ID: 32268119
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Context-dependent representations of movement in Drosophila dopaminergic reinforcement pathways.
    Zolin A; Cohn R; Pang R; Siliciano AF; Fairhall AL; Ruta V
    Nat Neurosci; 2021 Nov; 24(11):1555-1566. PubMed ID: 34697455
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neural correlates of water reward in thirsty Drosophila.
    Lin S; Owald D; Chandra V; Talbot C; Huetteroth W; Waddell S
    Nat Neurosci; 2014 Nov; 17(11):1536-42. PubMed ID: 25262493
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Representations of Novelty and Familiarity in a Mushroom Body Compartment.
    Hattori D; Aso Y; Swartz KJ; Rubin GM; Abbott LF; Axel R
    Cell; 2017 May; 169(5):956-969.e17. PubMed ID: 28502772
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Models of heterogeneous dopamine signaling in an insect learning and memory center.
    Jiang L; Litwin-Kumar A
    PLoS Comput Biol; 2021 Aug; 17(8):e1009205. PubMed ID: 34375329
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Spaced Training Forms Complementary Long-Term Memories of Opposite Valence in Drosophila.
    Jacob PF; Waddell S
    Neuron; 2020 Jun; 106(6):977-991.e4. PubMed ID: 32289250
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.