These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

265 related articles for article (PubMed ID: 31091476)

  • 21. A Connectomic Atlas of the Human Cerebrum-Chapter 1: Introduction, Methods, and Significance.
    Baker CM; Burks JD; Briggs RG; Conner AK; Glenn CA; Sali G; McCoy TM; Battiste JD; O'Donoghue DL; Sughrue ME
    Oper Neurosurg (Hagerstown); 2018 Dec; 15(suppl_1):S1-S9. PubMed ID: 30260422
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Strong-Weak Pruning for Brain Network Identification in Connectome-Wide Neuroimaging: Application to Amyotrophic Lateral Sclerosis Disease Stage Characterization.
    Serra A; Galdi P; Pesce E; Fratello M; Trojsi F; Tedeschi G; Tagliaferri R; Esposito F
    Int J Neural Syst; 2019 Sep; 29(7):1950007. PubMed ID: 30929575
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Optimising neonatal fMRI data analysis: Design and validation of an extended dHCP preprocessing pipeline to characterise noxious-evoked brain activity in infants.
    Baxter L; Fitzgibbon S; Moultrie F; Goksan S; Jenkinson M; Smith S; Andersson J; Duff E; Slater R
    Neuroimage; 2019 Feb; 186():286-300. PubMed ID: 30414984
    [TBL] [Abstract][Full Text] [Related]  

  • 24. fMRIflows: A Consortium of Fully Automatic Univariate and Multivariate fMRI Processing Pipelines.
    Notter MP; Herholz P; Da Costa S; Gulban OF; Isik AI; Gaglianese A; Murray MM
    Brain Topogr; 2023 Mar; 36(2):172-191. PubMed ID: 36575327
    [TBL] [Abstract][Full Text] [Related]  

  • 25. iBEAT V2.0: a multisite-applicable, deep learning-based pipeline for infant cerebral cortical surface reconstruction.
    Wang L; Wu Z; Chen L; Sun Y; Lin W; Li G
    Nat Protoc; 2023 May; 18(5):1488-1509. PubMed ID: 36869216
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An automated pipeline for obtaining labeled ICA-templates corresponding to functional brain systems.
    Tahedl M; Schwarzbach JV
    Hum Brain Mapp; 2023 Nov; 44(16):5202-5211. PubMed ID: 37516917
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of Denoising Strategies to Address Motion-Correlated Artifacts in Resting-State Functional Magnetic Resonance Imaging Data from the Human Connectome Project.
    Burgess GC; Kandala S; Nolan D; Laumann TO; Power JD; Adeyemo B; Harms MP; Petersen SE; Barch DM
    Brain Connect; 2016 Nov; 6(9):669-680. PubMed ID: 27571276
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integrating the BIDS Neuroimaging Data Format and Workflow Optimization for Large-Scale Medical Image Analysis.
    Bao S; Boyd BD; Kanakaraj P; Ramadass K; Meyer FAC; Liu Y; Duett WE; Huo Y; Lyu I; Zald DH; Smith SA; Rogers BP; Landman BA
    J Digit Imaging; 2022 Dec; 35(6):1576-1589. PubMed ID: 35922700
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evaluating the replicability, specificity, and generalizability of connectome fingerprints.
    Waller L; Walter H; Kruschwitz JD; Reuter L; Müller S; Erk S; Veer IM
    Neuroimage; 2017 Sep; 158():371-377. PubMed ID: 28710040
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Small Animal Multivariate Brain Analysis (SAMBA) - a High Throughput Pipeline with a Validation Framework.
    Anderson RJ; Cook JJ; Delpratt N; Nouls JC; Gu B; McNamara JO; Avants BB; Johnson GA; Badea A
    Neuroinformatics; 2019 Jul; 17(3):451-472. PubMed ID: 30565026
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Optimizing fMRI preprocessing pipelines for block-design tasks as a function of age.
    Churchill NW; Raamana P; Spring R; Strother SC
    Neuroimage; 2017 Jul; 154():240-254. PubMed ID: 28216431
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Optimizing BOLD sensitivity in the 7T Human Connectome Project resting-state fMRI protocol using plug-and-play parallel transmission.
    Gras V; Poser BA; Wu X; Tomi-Tricot R; Boulant N
    Neuroimage; 2019 Jul; 195():1-10. PubMed ID: 30923027
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Comparison of heritability estimates on resting state fMRI connectivity phenotypes using the ENIGMA analysis pipeline.
    Adhikari BM; Jahanshad N; Shukla D; Glahn DC; Blangero J; Fox PT; Reynolds RC; Cox RW; Fieremans E; Veraart J; Novikov DS; Nichols TE; Hong LE; Thompson PM; Kochunov P
    Hum Brain Mapp; 2018 Dec; 39(12):4893-4902. PubMed ID: 30052318
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The developing Human Connectome Project (dHCP) automated resting-state functional processing framework for newborn infants.
    Fitzgibbon SP; Harrison SJ; Jenkinson M; Baxter L; Robinson EC; Bastiani M; Bozek J; Karolis V; Cordero Grande L; Price AN; Hughes E; Makropoulos A; Passerat-Palmbach J; Schuh A; Gao J; Farahibozorg SR; O'Muircheartaigh J; Ciarrusta J; O'Keeffe C; Brandon J; Arichi T; Rueckert D; Hajnal JV; Edwards AD; Smith SM; Duff E; Andersson J
    Neuroimage; 2020 Dec; 223():117303. PubMed ID: 32866666
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Exploring 3-hinge gyral folding patterns among HCP Q3 868 human subjects.
    Zhang T; Chen H; Razavi MJ; Li Y; Ge F; Guo L; Wang X; Liu T
    Hum Brain Mapp; 2018 Oct; 39(10):4134-4149. PubMed ID: 29947164
    [TBL] [Abstract][Full Text] [Related]  

  • 36. FuNP (Fusion of Neuroimaging Preprocessing) Pipelines: A Fully Automated Preprocessing Software for Functional Magnetic Resonance Imaging.
    Park BY; Byeon K; Park H
    Front Neuroinform; 2019; 13():5. PubMed ID: 30804773
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Functional brain networks reconstruction using group sparsity-regularized learning.
    Zhao Q; Li WXY; Jiang X; Lv J; Lu J; Liu T
    Brain Imaging Behav; 2018 Jun; 12(3):758-770. PubMed ID: 28600738
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An open, multi-vendor, multi-field-strength brain MR dataset and analysis of publicly available skull stripping methods agreement.
    Souza R; Lucena O; Garrafa J; Gobbi D; Saluzzi M; Appenzeller S; Rittner L; Frayne R; Lotufo R
    Neuroimage; 2018 Apr; 170():482-494. PubMed ID: 28807870
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Understanding the impact of preprocessing pipelines on neuroimaging cortical surface analyses.
    Bhagwat N; Barry A; Dickie EW; Brown ST; Devenyi GA; Hatano K; DuPre E; Dagher A; Chakravarty M; Greenwood CMT; Misic B; Kennedy DN; Poline JB
    Gigascience; 2021 Jan; 10(1):. PubMed ID: 33481004
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The impact of traditional neuroimaging methods on the spatial localization of cortical areas.
    Coalson TS; Van Essen DC; Glasser MF
    Proc Natl Acad Sci U S A; 2018 Jul; 115(27):E6356-E6365. PubMed ID: 29925602
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.