These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 31091514)

  • 41. Establishment of a gut-on-a-chip device with controllable oxygen gradients to study the contribution of
    Liu J; Lu R; Zheng X; Hou W; Wu X; Zhao H; Wang G; Tian T
    Biomater Sci; 2023 Mar; 11(7):2504-2517. PubMed ID: 36779280
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Construction of 3D multicellular microfluidic chip for an in vitro skin model.
    Lee S; Jin SP; Kim YK; Sung GY; Chung JH; Sung JH
    Biomed Microdevices; 2017 Jun; 19(2):22. PubMed ID: 28374277
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cardiac Meets Skeletal: What's New in Microfluidic Models for Muscle Tissue Engineering.
    Visone R; Gilardi M; Marsano A; Rasponi M; Bersini S; Moretti M
    Molecules; 2016 Aug; 21(9):. PubMed ID: 27571058
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Robust bioengineered 3D functional human intestinal epithelium.
    Chen Y; Lin Y; Davis KM; Wang Q; Rnjak-Kovacina J; Li C; Isberg RR; Kumamoto CA; Mecsas J; Kaplan DL
    Sci Rep; 2015 Sep; 5():13708. PubMed ID: 26374193
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Dynamic flow and shear stress as key parameters for intestinal cells morphology and polarization in an organ-on-a-chip model.
    Fois CAM; Schindeler A; Valtchev P; Dehghani F
    Biomed Microdevices; 2021 Oct; 23(4):55. PubMed ID: 34655329
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A Biomimetic Human Gut-on-a-Chip for Modeling Drug Metabolism in Intestine.
    Guo Y; Li Z; Su W; Wang L; Zhu Y; Qin J
    Artif Organs; 2018 Dec; 42(12):1196-1205. PubMed ID: 30256442
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Fish-gut-on-chip: development of a microfluidic bioreactor to study the role of the fish intestine in vitro.
    Drieschner C; Könemann S; Renaud P; Schirmer K
    Lab Chip; 2019 Sep; 19(19):3268-3276. PubMed ID: 31482163
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Human Lung Small Airway-on-a-Chip Protocol.
    Benam KH; Mazur M; Choe Y; Ferrante TC; Novak R; Ingber DE
    Methods Mol Biol; 2017; 1612():345-365. PubMed ID: 28634955
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Co-culture of Living Microbiome with Microengineered Human Intestinal Villi in a Gut-on-a-Chip Microfluidic Device.
    Kim HJ; Lee J; Choi JH; Bahinski A; Ingber DE
    J Vis Exp; 2016 Aug; (114):. PubMed ID: 27684630
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Epimorphin expression in intestinal myofibroblasts induces epithelial morphogenesis.
    Fritsch C; Swietlicki EA; Lefebvre O; Kedinger M; Iordanov H; Levin MS; Rubin DC
    J Clin Invest; 2002 Dec; 110(11):1629-41. PubMed ID: 12464668
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Establishment of physiologically relevant oxygen gradients in microfluidic organ chips.
    Grant J; Lee E; Almeida M; Kim S; LoGrande N; Goyal G; Sesay AM; Breault DT; Prantil-Baun R; Ingber DE
    Lab Chip; 2022 Apr; 22(8):1584-1593. PubMed ID: 35274118
    [No Abstract]   [Full Text] [Related]  

  • 52. Layer-by-layer Collagen Deposition in Microfluidic Devices for Microtissue Stabilization.
    McCarty WJ; Prodanov L; Bale SS; Bhushan A; Jindal R; Yarmush ML; Usta OB
    J Vis Exp; 2015 Sep; (103):. PubMed ID: 26485274
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Endocrine system on chip for a diabetes treatment model.
    Nguyen DT; van Noort D; Jeong IK; Park S
    Biofabrication; 2017 Feb; 9(1):015021. PubMed ID: 28222044
    [TBL] [Abstract][Full Text] [Related]  

  • 54. PDMS-free microfluidic cell culture with integrated gas supply through a porous membrane of anodized aluminum oxide.
    Bunge F; van den Driesche S; Vellekoop MJ
    Biomed Microdevices; 2018 Nov; 20(4):98. PubMed ID: 30413897
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Towards Single-Step Biofabrication of Organs on a Chip via 3D Printing.
    Knowlton S; Yenilmez B; Tasoglu S
    Trends Biotechnol; 2016 Sep; 34(9):685-688. PubMed ID: 27424152
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A novel standalone microfluidic device for local control of oxygen tension for intestinal-bacteria interactions.
    Wang C; Dang T; Baste J; Anil Joshi A; Bhushan A
    FASEB J; 2021 Feb; 35(2):e21291. PubMed ID: 33506497
    [TBL] [Abstract][Full Text] [Related]  

  • 57. DynaMiTES - A dynamic cell culture platform for in vitro drug testing PART 1 - Engineering of microfluidic system and technical simulations.
    Mattern K; Beißner N; Reichl S; Dietzel A
    Eur J Pharm Biopharm; 2018 May; 126():159-165. PubMed ID: 28442371
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Microfluidic Platform for the Long-Term On-Chip Cultivation of Mammalian Cells for Lab-On-A-Chip Applications.
    Bunge F; Driesche SVD; Vellekoop MJ
    Sensors (Basel); 2017 Jul; 17(7):. PubMed ID: 28698531
    [TBL] [Abstract][Full Text] [Related]  

  • 59. In Vitro Microfluidic Models for Neurodegenerative Disorders.
    Osaki T; Shin Y; Sivathanu V; Campisi M; Kamm RD
    Adv Healthc Mater; 2018 Jan; 7(2):. PubMed ID: 28881425
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A Robust Longitudinal Co-culture of Obligate Anaerobic Gut Microbiome With Human Intestinal Epithelium in an Anoxic-Oxic Interface-on-a-Chip.
    Shin W; Wu A; Massidda MW; Foster C; Thomas N; Lee DW; Koh H; Ju Y; Kim J; Kim HJ
    Front Bioeng Biotechnol; 2019; 7():13. PubMed ID: 30792981
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.