These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 31091676)

  • 1. Autonomous Visual Perception for Unmanned Surface Vehicle Navigation in an Unknown Environment.
    Zhan W; Xiao C; Wen Y; Zhou C; Yuan H; Xiu S; Zhang Y; Zou X; Liu X; Li Q
    Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31091676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Convolutional neural network based obstacle detection for unmanned surface vehicle.
    Ma LY; Xie W; Huang HB
    Math Biosci Eng; 2019 Nov; 17(1):845-861. PubMed ID: 31731381
    [TBL] [Abstract][Full Text] [Related]  

  • 3. ROSEBUD: A Deep Fluvial Segmentation Dataset for Monocular Vision-Based River Navigation and Obstacle Avoidance.
    Lambert R; Chavez-Galaviz J; Li J; Mahmoudian N
    Sensors (Basel); 2022 Jun; 22(13):. PubMed ID: 35808174
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel MRI segmentation method using CNN-based correction network for MRI-guided adaptive radiotherapy.
    Fu Y; Mazur TR; Wu X; Liu S; Chang X; Lu Y; Li HH; Kim H; Roach MC; Henke L; Yang D
    Med Phys; 2018 Nov; 45(11):5129-5137. PubMed ID: 30269345
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Double Deep Q-Learning and Faster R-CNN-Based Autonomous Vehicle Navigation and Obstacle Avoidance in Dynamic Environment.
    Bin Issa R; Das M; Rahman MS; Barua M; Rhaman MK; Ripon KSN; Alam MGR
    Sensors (Basel); 2021 Feb; 21(4):. PubMed ID: 33672476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effective Waterline Detection of Unmanned Surface Vehicles Based on Optical Images.
    Wei Y; Zhang Y
    Sensors (Basel); 2016 Sep; 16(10):. PubMed ID: 27690027
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coarse-Fine-Stitched: A Robust Maritime Horizon Line Detection Method for Unmanned Surface Vehicle Applications.
    Sun Y; Fu L
    Sensors (Basel); 2018 Aug; 18(9):. PubMed ID: 30150547
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Decision-Making for the Autonomous Navigation of Maritime Autonomous Surface Ships Based on Scene Division and Deep Reinforcement Learning.
    Zhang X; Wang C; Liu Y; Chen X
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31546977
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Autonomous Navigation of a Team of Unmanned Surface Vehicles for Intercepting Intruders on a Region Boundary.
    Marzoughi A; Savkin AV
    Sensors (Basel); 2021 Jan; 21(1):. PubMed ID: 33406732
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of Crack Identification Techniques for an Aging Concrete Bridge Inspection Using an Unmanned Aerial Vehicle.
    Kim IH; Jeon H; Baek SC; Hong WH; Jung HJ
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29890652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Automated Vision-Based Detection of Cracks on Concrete Surfaces Using a Deep Learning Technique.
    Kim B; Cho S
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30322206
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Robust Drivable Road Region Detection for Fixed-Route Autonomous Vehicles Using Map-Fusion Images.
    Cai Y; Li D; Zhou X; Mou X
    Sensors (Basel); 2018 Nov; 18(12):. PubMed ID: 30486408
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Novel Water-Shore-Line Detection Method for USV Autonomous Navigation.
    Zou X; Xiao C; Zhan W; Zhou C; Xiu S; Yuan H
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32197317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Scene perception based visual navigation of mobile robot in indoor environment.
    Ran T; Yuan L; Zhang JB
    ISA Trans; 2021 Mar; 109():389-400. PubMed ID: 33069374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Learning to Detect Cracks on Damaged Concrete Surfaces Using Two-Branched Convolutional Neural Network.
    Lee J; Kim HS; Kim N; Ryu EM; Kang JW
    Sensors (Basel); 2019 Nov; 19(21):. PubMed ID: 31689987
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deep Convolutional Neural Network for Flood Extent Mapping Using Unmanned Aerial Vehicles Data.
    Gebrehiwot A; Hashemi-Beni L; Thompson G; Kordjamshidi P; Langan TE
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30934695
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of Improved Particle Swarm Optimization for Navigation of Unmanned Surface Vehicles.
    Xin J; Li S; Sheng J; Zhang Y; Cui Y
    Sensors (Basel); 2019 Jul; 19(14):. PubMed ID: 31337015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Research on the visual image-based complexity perception method of autonomous navigation scenes for unmanned surface vehicles.
    Shi B; Guo J; Wang C; Su Y; Di Y; AbouOmar MS
    Sci Rep; 2022 Jun; 12(1):10370. PubMed ID: 35726003
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Patient-specific and global convolutional neural networks for robust automatic liver tumor delineation in follow-up CT studies.
    Vivanti R; Joskowicz L; Lev-Cohain N; Ephrat A; Sosna J
    Med Biol Eng Comput; 2018 Sep; 56(9):1699-1713. PubMed ID: 29524116
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Edge Preserving and Multi-Scale Contextual Neural Network for Salient Object Detection.
    Wang X; Ma H; Chen X; You S
    IEEE Trans Image Process; 2018 Jan.; 27(1):121-134. PubMed ID: 28952942
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.