These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

358 related articles for article (PubMed ID: 31091838)

  • 1. Resource Provisioning in Fog Computing: From Theory to Practice
    Santos J; Wauters T; Volckaert B; De Turck F
    Sensors (Basel); 2019 May; 19(10):. PubMed ID: 31091838
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quality of Service Provision in Fog Computing: Network-Aware Scheduling of Containers.
    Caminero AC; Muñoz-Mansilla R
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34207675
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Smart Containers Schedulers for Microservices Provision in Cloud-Fog-IoT Networks. Challenges and Opportunities.
    Pérez de Prado R; García-Galán S; Muñoz-Expósito JE; Marchewka A; Ruiz-Reyes N
    Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32204390
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic Scheduling of Contextually Categorised Internet of Things Services in Fog Computing Environment.
    Krivic P; Kusek M; Cavrak I; Skocir P
    Sensors (Basel); 2022 Jan; 22(2):. PubMed ID: 35062426
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fog Computing: Enabling the Management and Orchestration of Smart City Applications in 5G Networks.
    Santos J; Wauters T; Volckaert B; De Turck F
    Entropy (Basel); 2017 Dec; 20(1):. PubMed ID: 33265095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Online Workload Allocation via Fog-Fog-Cloud Cooperation to Reduce IoT Task Service Delay.
    Li L; Guo M; Ma L; Mao H; Guan Q
    Sensors (Basel); 2019 Sep; 19(18):. PubMed ID: 31487947
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design and Experimental Validation of a LoRaWAN Fog Computing Based Architecture for IoT Enabled Smart Campus Applications.
    Fraga-Lamas P; Celaya-Echarri M; Lopez-Iturri P; Castedo L; Azpilicueta L; Aguirre E; Suárez-Albela M; Falcone F; Fernández-Caramés TM
    Sensors (Basel); 2019 Jul; 19(15):. PubMed ID: 31357407
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Capillary Computing Architecture for Dynamic Internet of Things: Orchestration of Microservices from Edge Devices to Fog and Cloud Providers.
    Taherizadeh S; Stankovski V; Grobelnik M
    Sensors (Basel); 2018 Sep; 18(9):. PubMed ID: 30181454
    [TBL] [Abstract][Full Text] [Related]  

  • 9. QoS-Based Service-Time Scheduling in the IoT-Edge Cloud.
    Mutichiro B; Tran MN; Kim YH
    Sensors (Basel); 2021 Aug; 21(17):. PubMed ID: 34502688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Container Migration in the Fog: A Performance Evaluation.
    Puliafito C; Vallati C; Mingozzi E; Merlino G; Longo F; Puliafito A
    Sensors (Basel); 2019 Mar; 19(7):. PubMed ID: 30934704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Panorama of Cloud Platforms for IoT Applications Across Industries.
    Yangui S
    Sensors (Basel); 2020 May; 20(9):. PubMed ID: 32397423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Architecting and Deploying IoT Smart Applications: A Performance-Oriented Approach.
    Zyrianoff I; Heideker A; Silva D; Kleinschmidt J; Soininen JP; Salmon Cinotti T; Kamienski C
    Sensors (Basel); 2019 Dec; 20(1):. PubMed ID: 31877812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. FogFrame: a framework for IoT application execution in the fog.
    Skarlat O; Schulte S
    PeerJ Comput Sci; 2021; 7():e588. PubMed ID: 34307857
    [TBL] [Abstract][Full Text] [Related]  

  • 14. qCon: QoS-Aware Network Resource Management for Fog Computing.
    Hong CH; Lee K; Kang M; Yoo C
    Sensors (Basel); 2018 Oct; 18(10):. PubMed ID: 30322161
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An IoT-Based Fog Computing Model.
    Ma K; Bagula A; Nyirenda C; Ajayi O
    Sensors (Basel); 2019 Jun; 19(12):. PubMed ID: 31234280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. IoT Workflow Scheduling Using Intelligent Arithmetic Optimization Algorithm in Fog Computing.
    Abd Elaziz M; Abualigah L; Ibrahim RA; Attiya I
    Comput Intell Neurosci; 2021; 2021():9114113. PubMed ID: 34976046
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Resource Management Techniques for Cloud/Fog and Edge Computing: An Evaluation Framework and Classification.
    Mijuskovic A; Chiumento A; Bemthuis R; Aldea A; Havinga P
    Sensors (Basel); 2021 Mar; 21(5):. PubMed ID: 33808037
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Local Scheduling in KubeEdge-Based Edge Computing Environment.
    Kim SH; Kim T
    Sensors (Basel); 2023 Jan; 23(3):. PubMed ID: 36772562
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Latency-Aware Task Scheduling for IoT Applications Based on Artificial Intelligence with Partitioning in Small-Scale Fog Computing Environments.
    Lim J
    Sensors (Basel); 2022 Sep; 22(19):. PubMed ID: 36236423
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design, Implementation and Practical Evaluation of an IoT Home Automation System for Fog Computing Applications Based on MQTT and ZigBee-WiFi Sensor Nodes.
    Froiz-Míguez I; Fernández-Caramés TM; Fraga-Lamas P; Castedo L
    Sensors (Basel); 2018 Aug; 18(8):. PubMed ID: 30104529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 18.