These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Phospholipid Membrane Formation Templated by Coacervate Droplets. Pir Cakmak F; Marianelli AM; Keating CD Langmuir; 2021 Aug; 37(34):10366-10375. PubMed ID: 34398617 [TBL] [Abstract][Full Text] [Related]
3. Hybrid Protocells Based on Coacervate-Templated Fatty Acid Vesicles Combine Improved Membrane Stability with Functional Interior Protocytoplasm. Lee J; Pir Cakmak F; Booth R; Keating CD Small; 2024 Oct; ():e2406671. PubMed ID: 39402790 [TBL] [Abstract][Full Text] [Related]
4. Polyamine/Nucleotide Coacervates Provide Strong Compartmentalization of Mg²⁺, Nucleotides, and RNA. Frankel EA; Bevilacqua PC; Keating CD Langmuir; 2016 Mar; 32(8):2041-9. PubMed ID: 26844692 [TBL] [Abstract][Full Text] [Related]
5. Understanding the Coacervate-to-Vesicle Transition of Globular Fusion Proteins to Engineer Protein Vesicle Size and Membrane Heterogeneity. Jang Y; Hsieh MC; Dautel D; Guo S; Grover MA; Champion JA Biomacromolecules; 2019 Sep; 20(9):3494-3503. PubMed ID: 31460745 [TBL] [Abstract][Full Text] [Related]
6. Engineering the Coacervate Microdroplet Interface via Polyelectrolyte and Surfactant Complexation. Yin C; Lin Z; Jiang X; Martin N; Tian L ACS Appl Mater Interfaces; 2023 Jun; 15(23):27447-27456. PubMed ID: 37272663 [TBL] [Abstract][Full Text] [Related]
7. Continuous Transformation from Membrane-Less Coacervates to Membranized Coacervates and Giant Vesicles: Toward Multicompartmental Protocells with Complex (Membrane) Architectures. Zhou Y; Zhang K; Moreno S; Temme A; Voit B; Appelhans D Angew Chem Int Ed Engl; 2024 Aug; 63(34):e202407472. PubMed ID: 38847278 [TBL] [Abstract][Full Text] [Related]
9. Interfacial properties of polymeric complex coacervates from simulation and theory. Lytle TK; Salazar AJ; Sing CE J Chem Phys; 2018 Oct; 149(16):163315. PubMed ID: 30384702 [TBL] [Abstract][Full Text] [Related]
10. Fatty Acid-Based Coacervates as a Membrane-free Protocell Model. Zhou L; Koh JJ; Wu J; Fan X; Chen H; Hou X; Jiang L; Lu X; Li Z; He C Bioconjug Chem; 2022 Mar; 33(3):444-451. PubMed ID: 35138820 [TBL] [Abstract][Full Text] [Related]
11. RNA-Based Coacervates as a Model for Membraneless Organelles: Formation, Properties, and Interfacial Liposome Assembly. Aumiller WM; Pir Cakmak F; Davis BW; Keating CD Langmuir; 2016 Oct; 32(39):10042-10053. PubMed ID: 27599198 [TBL] [Abstract][Full Text] [Related]
12. Dynamic Control of Functional Coacervates in Synthetic Cells. Nair KS; Radhakrishnan S; Bajaj H ACS Synth Biol; 2023 Jul; 12(7):2168-2177. PubMed ID: 37337618 [TBL] [Abstract][Full Text] [Related]
13. How Droplets Can Accelerate Reactions─Coacervate Protocells as Catalytic Microcompartments. Smokers IBA; Visser BS; Slootbeek AD; Huck WTS; Spruijt E Acc Chem Res; 2024 Jul; 57(14):1885-1895. PubMed ID: 38968602 [TBL] [Abstract][Full Text] [Related]
14. Interfacial Assembly of Bacterial Microcompartment Shell Proteins in Aqueous Multiphase Systems. Abeysinghe AADT; Young EJ; Rowland AT; Dunshee LC; Urandur S; Sullivan MO; Kerfeld CA; Keating CD Small; 2024 Apr; 20(15):e2308390. PubMed ID: 38037673 [TBL] [Abstract][Full Text] [Related]
15. Tuning of Cationic Polymer Functionality in Complex Coacervate Artificial Cells for Optimized Enzyme Activity. Cook AB; Gonzalez BD; van Hest JCM Biomacromolecules; 2024 Jan; 25(1):425-435. PubMed ID: 38064593 [TBL] [Abstract][Full Text] [Related]
16. Dynamic Coupling in Unentangled Liquid Coacervates Formed by Oppositely Charged Polyelectrolytes. Aponte-Rivera C; Rubinstein M Macromolecules; 2021 Feb; 54(4):1783-1800. PubMed ID: 33981120 [TBL] [Abstract][Full Text] [Related]
17. Impact of macromolecular crowding on RNA/spermine complex coacervation and oligonucleotide compartmentalization. Marianelli AM; Miller BM; Keating CD Soft Matter; 2018 Jan; 14(3):368-378. PubMed ID: 29265152 [TBL] [Abstract][Full Text] [Related]
18. Spontaneous Transition of Spherical Coacervate to Vesicle-Like Compartment. Choi H; Hong Y; Najafi S; Kim SY; Shea JE; Hwang DS; Choi YS Adv Sci (Weinh); 2024 Feb; 11(7):e2305978. PubMed ID: 38063842 [TBL] [Abstract][Full Text] [Related]
19. Mixtures of Intrinsically Disordered Neuronal Protein Tau and Anionic Liposomes Reveal Distinct Anionic Liposome-Tau Complexes Coexisting with Tau Liquid-Liquid Phase Separated Coacervates. Tchounwou C; Jobanputra AJ; Lasher D; Fletcher BJ; Jacinto J; Bhaduri A; Best RL; Fisher WS; Ewert KK; Li Y; Feinstein SC; Safinya CR bioRxiv; 2024 Jul; ():. PubMed ID: 39071287 [TBL] [Abstract][Full Text] [Related]
20. Coacervation between Two Positively Charged Poly(ionic liquid)s. Zhang C; Cai Y; Zhao Q Macromol Rapid Commun; 2022 Sep; 43(18):e2200191. PubMed ID: 35632991 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]