These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

206 related articles for article (PubMed ID: 31091890)

  • 1. Stochastic wave packet approach to nonadiabatic scattering of diatomic molecules from metals.
    Serwatka T; Tremblay JC
    J Chem Phys; 2019 May; 150(18):184105. PubMed ID: 31091890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Scattering of NO(ν = 3) from Au(111): a stochastic dissipative quantum dynamical perspective.
    Serwatka T; Füchsel G; Tremblay JC
    Phys Chem Chem Phys; 2020 Mar; 22(12):6584-6594. PubMed ID: 32159168
    [TBL] [Abstract][Full Text] [Related]  

  • 3. First-Principles Nonadiabatic Dynamics of Molecules at Metal Surfaces with Vibrationally Coupled Electron Transfer.
    Meng G; Gardner J; Hertl N; Dou W; Maurer RJ; Jiang B
    Phys Rev Lett; 2024 Jul; 133(3):036203. PubMed ID: 39094165
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational approaches to dissociative chemisorption on metals: towards chemical accuracy.
    Kroes GJ
    Phys Chem Chem Phys; 2021 Apr; 23(15):8962-9048. PubMed ID: 33885053
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Time-independent quantum theory on vibrational inelastic scattering between atoms and open-shell diatomic molecules: Applications to NO + Ar and NO + H scattering.
    Zuo J; Guo H
    J Chem Phys; 2020 Oct; 153(14):144306. PubMed ID: 33086802
    [TBL] [Abstract][Full Text] [Related]  

  • 6. State-to-state time-of-flight measurements of NO scattering from Au(111): direct observation of translation-to-vibration coupling in electronically nonadiabatic energy transfer.
    Golibrzuch K; Shirhatti PR; Altschäffel J; Rahinov I; Auerbach DJ; Wodtke AM; Bartels C
    J Phys Chem A; 2013 Sep; 117(36):8750-60. PubMed ID: 23808714
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Relaxation dynamics in quantum dissipative systems: the microscopic effect of intramolecular vibrational energy redistribution.
    Uranga-Piña L; Tremblay JC
    J Chem Phys; 2014 Aug; 141(7):074703. PubMed ID: 25149802
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multidimensional stochastic dissipative quantum dynamics using a Lindblad operator.
    Mandal S; Gatti F; Bindech O; Marquardt R; Tremblay JC
    J Chem Phys; 2022 Mar; 156(9):094109. PubMed ID: 35259883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Vibrational Relaxation of Highly Vibrationally Excited CO Scattered from Au(111): Evidence for CO
    Wagner RJV; Henning N; Krüger BC; Park GB; Altschäffel J; Kandratsenka A; Wodtke AM; Schäfer T
    J Phys Chem Lett; 2017 Oct; 8(19):4887-4892. PubMed ID: 28930463
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Assessing Mixed Quantum-Classical Molecular Dynamics Methods for Nonadiabatic Dynamics of Molecules on Metal Surfaces.
    Gardner J; Habershon S; Maurer RJ
    J Phys Chem C Nanomater Interfaces; 2023 Aug; 127(31):15257-15270. PubMed ID: 37583439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nonadiabatic dynamics at metal surfaces: independent-electron surface hopping.
    Shenvi N; Roy S; Tully JC
    J Chem Phys; 2009 May; 130(17):174107. PubMed ID: 19425769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced reactivity of highly vibrationally excited molecules on metal surfaces.
    Hou H; Huang Y; Gulding SJ; Rettner CT; Auerbach DJ; Wodtke AM
    Science; 1999 Jun; 284(5420):1647-50. PubMed ID: 10356389
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonadiabatic effects on peptide vibrational dynamics induced by conformational changes.
    Antony J; Schmidt B; Schütte C
    J Chem Phys; 2005 Jan; 122(1):14309. PubMed ID: 15638661
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Higher-order split operator schemes for solving the Schrödinger equation in the time-dependent wave packet method: applications to triatomic reactive scattering calculations.
    Sun Z; Yang W; Zhang DH
    Phys Chem Chem Phys; 2012 Feb; 14(6):1827-45. PubMed ID: 22234283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The roles of electronic exchange and correlation in charge-transfer- to-solvent dynamics: Many-electron nonadiabatic mixed quantum/classical simulations of photoexcited sodium anions in the condensed phase.
    Glover WJ; Larsen RE; Schwartz BJ
    J Chem Phys; 2008 Oct; 129(16):164505. PubMed ID: 19045282
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The importance of accurate adiabatic interaction potentials for the correct description of electronically nonadiabatic vibrational energy transfer: a combined experimental and theoretical study of NO(v = 3) collisions with a Au(111) surface.
    Golibrzuch K; Shirhatti PR; Rahinov I; Kandratsenka A; Auerbach DJ; Wodtke AM; Bartels C
    J Chem Phys; 2014 Jan; 140(4):044701. PubMed ID: 25669561
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A 4D wave packet study of the CH3I photodissociation in the A-band. Comparison with femtosecond velocity map imaging experiments.
    García-Vela A; de Nalda R; Durá J; González-Vázquez J; Bañares L
    J Chem Phys; 2011 Oct; 135(15):154306. PubMed ID: 22029312
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dynamical steering and electronic excitation in NO scattering from a gold surface.
    Shenvi N; Roy S; Tully JC
    Science; 2009 Nov; 326(5954):829-32. PubMed ID: 19892977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Determining the Effect of Hot Electron Dissipation on Molecular Scattering Experiments at Metal Surfaces.
    Box CL; Zhang Y; Yin R; Jiang B; Maurer RJ
    JACS Au; 2021 Feb; 1(2):164-173. PubMed ID: 34467282
    [TBL] [Abstract][Full Text] [Related]  

  • 20. State-to-state quantum dynamics of H
    Zhang L; Jiang B
    J Chem Phys; 2020 Dec; 153(21):214702. PubMed ID: 33291922
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.