These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 31091892)

  • 1. Estimation of the magnitude of quadrupole relaxation enhancement in the context of magnetic resonance imaging contrast.
    Kruk D; Masiewicz E; Umut E; Petrovic A; Kargl R; Scharfetter H
    J Chem Phys; 2019 May; 150(18):184306. PubMed ID: 31091892
    [TBL] [Abstract][Full Text] [Related]  

  • 2.
    Kruk D; Umut E; Masiewicz E; Sampl C; Fischer R; Spirk S; Goesweiner C; Scharfetter H
    Phys Chem Chem Phys; 2018 May; 20(18):12710-12718. PubMed ID: 29697118
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Model - free approach to quadrupole spin relaxation in solid
    Kruk D; Goesweiner C; Masiewicz E; Umut E; Sampl C; Scharfetter H
    Phys Chem Chem Phys; 2018 Sep; 20(36):23414-23423. PubMed ID: 30179238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of [C3H5N2]6[Bi4Br18] by means of (1)H NMR relaxometry and quadrupole relaxation enhancement.
    Masierak W; Florek-Wojciechowska M; Oglodek I; Jakubas R; Privalov AF; Kresse B; Fujara F; Kruk D
    J Chem Phys; 2015 May; 142(20):204503. PubMed ID: 26026454
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multi-quantum quadrupole relaxation enhancement effects in
    Kruk D; Umut E; Masiewicz E; Fischer R; Scharfetter H
    J Chem Phys; 2019 May; 150(18):184309. PubMed ID: 31091937
    [No Abstract]   [Full Text] [Related]  

  • 6. Simple expressions of the nuclear relaxation rate enhancement due to quadrupole nuclei in slowly tumbling molecules.
    Fries PH; Belorizky E
    J Chem Phys; 2015 Jul; 143(4):044202. PubMed ID: 26233122
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quadrupole relaxation enhancement--application to molecular crystals.
    Kruk D; Kubica A; Masierak W; Privalov AF; Wojciechowski M; Medycki W
    Solid State Nucl Magn Reson; 2011 Oct; 40(3):114-20. PubMed ID: 21906916
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nuclear relaxation rate enhancement by a
    Belorizky E; Fries PH
    J Chem Phys; 2021 Nov; 155(18):184108. PubMed ID: 34773943
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Magnetic resonance relaxation properties of superparamagnetic particles.
    Gossuin Y; Gillis P; Hocq A; Vuong QL; Roch A
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2009; 1(3):299-310. PubMed ID: 20049798
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of Solid Proteins by Means of Nuclear Magnetic Resonance Relaxometry.
    Kruk D; Masiewicz E; Borkowska AM; Rochowski P; Fries PH; Broche LM; Lurie DJ
    Biomolecules; 2019 Oct; 9(11):. PubMed ID: 31731514
    [No Abstract]   [Full Text] [Related]  

  • 11. (1)H NMR relaxometry and quadrupole relaxation enhancement as a sensitive probe of dynamical properties of solids--[C(NH2)3]3Bi2I9 as an example.
    Florek-Wojciechowska M; Wojciechowski M; Jakubas R; Brym S; Kruk D
    J Chem Phys; 2016 Feb; 144(5):054501. PubMed ID: 26851925
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Basic principles of magnetic resonance contrast agents.
    Kirsch JE
    Top Magn Reson Imaging; 1991 Mar; 3(2):1-18. PubMed ID: 2025431
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoparticles in magnetic resonance imaging: from simple to dual contrast agents.
    Estelrich J; Sánchez-Martín MJ; Busquets MA
    Int J Nanomedicine; 2015; 10():1727-41. PubMed ID: 25834422
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Kruk D; Rochowski P; Florek-Wojciechowska M; Sebastião PJ; Lurie DJ; Broche LM
    J Magn Reson; 2020 Sep; 318():106783. PubMed ID: 32755749
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights on the relaxation of liposomes encapsulating paramagnetic Ln-based complexes.
    Mulas G; Ferrauto G; Dastrù W; Anedda R; Aime S; Terreno E
    Magn Reson Med; 2015 Aug; 74(2):468-73. PubMed ID: 25186276
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis and characterization of PEGylated Gd2O3 nanoparticles for MRI contrast enhancement.
    Ahrén M; Selegård L; Klasson A; Söderlind F; Abrikossova N; Skoglund C; Bengtsson T; Engström M; Käll PO; Uvdal K
    Langmuir; 2010 Apr; 26(8):5753-62. PubMed ID: 20334417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamics of paramagnetic agents by off-resonance rotating frame technique.
    Zhang H; Xie Y
    J Magn Reson; 2006 Dec; 183(2):213-27. PubMed ID: 16979920
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Gadolinium-chelate functionalized bismuth nanotheranostic agent for in vivo MRI/CT/PAI imaging-guided photothermal cancer therapy.
    Wu B; Lu ST; Yu H; Liao RF; Li H; Lucie Zafitatsimo BV; Li YS; Zhang Y; Zhu XL; Liu HG; Xu HB; Huang SW; Cheng Z
    Biomaterials; 2018 Mar; 159():37-47. PubMed ID: 29309992
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chemistry of paramagnetic and diamagnetic contrast agents for Magnetic Resonance Imaging and Spectroscopy pH responsive contrast agents.
    Pérez-Mayoral E; Negri V; Soler-Padrós J; Cerdán S; Ballesteros P
    Eur J Radiol; 2008 Sep; 67(3):453-8. PubMed ID: 18455343
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Polycatechol Nanoparticle MRI Contrast Agents.
    Li Y; Huang Y; Wang Z; Carniato F; Xie Y; Patterson JP; Thompson MP; Andolina CM; Ditri TB; Millstone JE; Figueroa JS; Rinehart JD; Scadeng M; Botta M; Gianneschi NC
    Small; 2016 Feb; 12(5):668-77. PubMed ID: 26681255
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.