These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 31092586)

  • 1. Cascaded Tuning to Amplitude Modulation for Natural Sound Recognition.
    Koumura T; Terashima H; Furukawa S
    J Neurosci; 2019 Jul; 39(28):5517-5533. PubMed ID: 31092586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Human-Like Modulation Sensitivity Emerging through Optimization to Natural Sound Recognition.
    Koumura T; Terashima H; Furukawa S
    J Neurosci; 2023 May; 43(21):3876-3894. PubMed ID: 37185101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Neural processing of amplitude-modulated sounds.
    Joris PX; Schreiner CE; Rees A
    Physiol Rev; 2004 Apr; 84(2):541-77. PubMed ID: 15044682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Auditory responsive cortex in the squirrel monkey: neural responses to amplitude-modulated sounds.
    Bieser A; Müller-Preuss P
    Exp Brain Res; 1996 Mar; 108(2):273-84. PubMed ID: 8815035
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Representation of the temporal envelope of sounds in the human brain.
    Giraud AL; Lorenzi C; Ashburner J; Wable J; Johnsrude I; Frackowiak R; Kleinschmidt A
    J Neurophysiol; 2000 Sep; 84(3):1588-98. PubMed ID: 10980029
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Neural representations of complex temporal modulations in the human auditory cortex.
    Ding N; Simon JZ
    J Neurophysiol; 2009 Nov; 102(5):2731-43. PubMed ID: 19692508
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neurometric amplitude-modulation detection threshold in the guinea-pig ventral cochlear nucleus.
    Sayles M; Füllgrabe C; Winter IM
    J Physiol; 2013 Jul; 591(13):3401-19. PubMed ID: 23629508
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Redundant Cortical Code for Speech Envelope.
    Penikis KB; Sanes DH
    J Neurosci; 2023 Jan; 43(1):93-112. PubMed ID: 36379706
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Representation of spectral and temporal sound features in three cortical fields of the cat. Similarities outweigh differences.
    Eggermont JJ
    J Neurophysiol; 1998 Nov; 80(5):2743-64. PubMed ID: 9819278
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Neural coding of sound envelope in reverberant environments.
    Slama MC; Delgutte B
    J Neurosci; 2015 Mar; 35(10):4452-68. PubMed ID: 25762687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Modulation frequency as a cue for auditory speed perception.
    Senna I; Parise CV; Ernst MO
    Proc Biol Sci; 2017 Jul; 284(1858):. PubMed ID: 28701558
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two stages of bandwidth scaling drives efficient neural coding of natural sounds.
    He F; Stevenson IH; Escabí MA
    PLoS Comput Biol; 2023 Feb; 19(2):e1010862. PubMed ID: 36787338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mapping cortico-subcortical sensitivity to 4 Hz amplitude modulation depth in human auditory system with functional MRI.
    Fuglsang SA; Madsen KH; Puonti O; Hjortkjær J; Siebner HR
    Neuroimage; 2022 Feb; 246():118745. PubMed ID: 34808364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Age-related shifts in distortion product otoacoustic emissions peak-ratios and amplitude modulation spectra.
    Lai J; Bartlett EL
    Hear Res; 2015 Sep; 327():186-98. PubMed ID: 26232530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Brain-optimized extraction of complex sound features that drive continuous auditory perception.
    Berezutskaya J; Freudenburg ZV; Güçlü U; van Gerven MAJ; Ramsey NF
    PLoS Comput Biol; 2020 Jul; 16(7):e1007992. PubMed ID: 32614826
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Representation of temporal sound features in the human auditory cortex.
    Nourski KV; Brugge JF
    Rev Neurosci; 2011; 22(2):187-203. PubMed ID: 21476940
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluating the Columnar Stability of Acoustic Processing in the Human Auditory Cortex.
    Moerel M; De Martino F; Uğurbil K; Formisano E; Yacoub E
    J Neurosci; 2018 Sep; 38(36):7822-7832. PubMed ID: 30185539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sound recognition and localization in man: specialized cortical networks and effects of acute circumscribed lesions.
    Adriani M; Maeder P; Meuli R; Thiran AB; Frischknecht R; Villemure JG; Mayer J; Annoni JM; Bogousslavsky J; Fornari E; Thiran JP; Clarke S
    Exp Brain Res; 2003 Dec; 153(4):591-604. PubMed ID: 14504861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Two-channel recording of auditory-evoked potentials to detect age-related deficits in temporal processing.
    Parthasarathy A; Bartlett E
    Hear Res; 2012 Jul; 289(1-2):52-62. PubMed ID: 22560961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Memory Specific to Temporal Features of Sound Is Formed by Cue-Selective Enhancements in Temporal Coding Enabled by Inhibition of an Epigenetic Regulator.
    Rotondo EK; Bieszczad KM
    J Neurosci; 2021 Nov; 41(44):9192-9209. PubMed ID: 34544835
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.