These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 31092878)

  • 1. A novel, rapid, seedless, in situ synthesis method of shape and size controllable gold nanoparticles using phosphates.
    Liu K; He Z; Curtin JF; Byrne HJ; Tian F
    Sci Rep; 2019 May; 9(1):7421. PubMed ID: 31092878
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid Seedless Synthesis of Gold Nanoplates with Microscaled Edge Length in a High Yield and Their Application in SERS.
    Chen S; Xu P; Li Y; Xue J; Han S; Ou W; Li L; Ni W
    Nanomicro Lett; 2016; 8(4):328-335. PubMed ID: 30460291
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Purification of gold nanoplates grown directly on surfaces for enhanced localized surface plasmon resonance biosensing.
    Beeram SR; Zamborini FP
    ACS Nano; 2010 Jul; 4(7):3633-46. PubMed ID: 20575510
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-yield seedless synthesis of triangular gold nanoplates through oxidative etching.
    Chen L; Ji F; Xu Y; He L; Mi Y; Bao F; Sun B; Zhang X; Zhang Q
    Nano Lett; 2014 Dec; 14(12):7201-6. PubMed ID: 25412030
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine.
    Jain PK; Lee KS; El-Sayed IH; El-Sayed MA
    J Phys Chem B; 2006 Apr; 110(14):7238-48. PubMed ID: 16599493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rapid Fabrication of Gold Nanoflowers Tuned by pH: Insights Into the Growth Mechanism.
    Lv C; Zhang XY; Mu CL; Wu D; Wang CM; Zhang QL
    J Nanosci Nanotechnol; 2015 Apr; 15(4):2761-9. PubMed ID: 26353490
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synthesis of Surface-Enhanced Raman Scattering-Active Gold Nanoflowers by 5-Hydroxytryptophan in Acidic Solution.
    Sun YN; Xu H; Ding XY; Yu YB; Zhang QQ
    J Nanosci Nanotechnol; 2015 Feb; 15(2):1427-33. PubMed ID: 26353667
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-step wet chemical synthesis of gold nanoplates on solid substrate using poly-l-lysine as a reducing agent.
    Nafisah S; Morsin M; Jumadi NA; Nayan N; Md Shah NZA; Razali NL; Mat Salleh M
    MethodsX; 2018; 5():1618-1625. PubMed ID: 30568883
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Controllable Biosynthesis and Properties of Gold Nanoplates Using Yeast Extract.
    Yang Z; Li Z; Lu X; He F; Zhu X; Ma Y; He R; Gao F; Ni W; Yi Y
    Nanomicro Lett; 2017; 9(1):5. PubMed ID: 30460302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrasensitive colorimetric detection of tetracyclines based on in-situ growth of gold nanoflowers.
    Li D; Liang R; Fan A
    Anal Sci; 2023 Aug; 39(8):1223-1231. PubMed ID: 37017813
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Single-parameter-tuned synthesis for shape-controlled gold nanocrystals stimulated by iron carbonyl.
    Sun H; Xu W; Chen J; Zhang H; Yu J; Zong C; Yang J; Zhong Z; Tang Y
    J Colloid Interface Sci; 2021 Nov; 601():773-781. PubMed ID: 34102406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Spectrum and size controllable synthesis of high-quality gold nanorods using 1,7-dihydroxynaphthalene as a reducing agent.
    Guo Y; Liu Q; Wei A; Jiang S; Chen F; Huang J; He Y; Huang G; Wu Z
    Dalton Trans; 2023 Jan; 52(4):1052-1061. PubMed ID: 36602082
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gold Nanoplates for a Localized Surface Plasmon Resonance-Based Boric Acid Sensor.
    Morsin M; Mat Salleh M; Ali Umar A; Sahdan MZ
    Sensors (Basel); 2017 Apr; 17(5):. PubMed ID: 28441323
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of Finely Controllable Sizes of Au Nanoparticles on a Silica Template and Their Nanozyme Properties.
    Seong B; Kim J; Kim W; Lee SH; Pham XH; Jun BH
    Int J Mol Sci; 2021 Sep; 22(19):. PubMed ID: 34638723
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gold and silver nanoparticles: a class of chromophores with colors tunable in the range from 400 to 750 nm.
    Sun Y; Xia Y
    Analyst; 2003 Jun; 128(6):686-91. PubMed ID: 12866889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of complex shape gold nanoparticles in water-methanol mixtures.
    Stanishevsky AV; Williamson H; Yockell-Lelievre H; Rast L; Ritcey AM
    J Nanosci Nanotechnol; 2006 Jul; 6(7):2013-7. PubMed ID: 17025117
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Seedless initiation as an efficient, sustainable route to anisotropic gold nanoparticles.
    Straney PJ; Andolina CM; Millstone JE
    Langmuir; 2013 Apr; 29(13):4396-403. PubMed ID: 23517186
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The synthesis of SERS-active gold nanoflower tags for in vivo applications.
    Xie J; Zhang Q; Lee JY; Wang DI
    ACS Nano; 2008 Dec; 2(12):2473-80. PubMed ID: 19206281
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Block copolymer-mediated synthesis of size-tunable gold nanospheres and nanoplates.
    Goy-López S; Castro E; Taboada P; Mosquera V
    Langmuir; 2008 Nov; 24(22):13186-96. PubMed ID: 18925755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Seedless synthesis and SERS characterization of multi-branched gold nanoflowers using water soluble polymers.
    Kariuki VM; Hoffmeier JC; Yazgan I; Sadik OA
    Nanoscale; 2017 Jun; 9(24):8330-8340. PubMed ID: 28590471
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.