These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 31092923)

  • 1. Cavity quantum electrodynamics with atom-like mirrors.
    Mirhosseini M; Kim E; Zhang X; Sipahigil A; Dieterle PB; Keller AJ; Asenjo-Garcia A; Chang DE; Painter O
    Nature; 2019 May; 569(7758):692-697. PubMed ID: 31092923
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Waveguide quantum electrodynamics with superconducting artificial giant atoms.
    Kannan B; Ruckriegel MJ; Campbell DL; Frisk Kockum A; Braumüller J; Kim DK; Kjaergaard M; Krantz P; Melville A; Niedzielski BM; Vepsäläinen A; Winik R; Yoder JL; Nori F; Orlando TP; Gustavsson S; Oliver WD
    Nature; 2020 Jul; 583(7818):775-779. PubMed ID: 32728243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Waveguide-coupled single collective excitation of atomic arrays.
    Corzo NV; Raskop J; Chandra A; Sheremet AS; Gouraud B; Laurat J
    Nature; 2019 Feb; 566(7744):359-362. PubMed ID: 30718773
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decoherence-Free Interaction between Giant Atoms in Waveguide Quantum Electrodynamics.
    Kockum AF; Johansson G; Nori F
    Phys Rev Lett; 2018 Apr; 120(14):140404. PubMed ID: 29694115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics.
    Wallraff A; Schuster DI; Blais A; Frunzio L; Huang R; Majer J; Kumar S; Girvin SM; Schoelkopf RJ
    Nature; 2004 Sep; 431(7005):162-7. PubMed ID: 15356625
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Many-Body Radiative Decay in Strongly Interacting Rydberg Ensembles.
    Nill C; Brandner K; Olmos B; Carollo F; Lesanovsky I
    Phys Rev Lett; 2022 Dec; 129(24):243202. PubMed ID: 36563275
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Strong atom-field coupling for Bose-Einstein condensates in an optical cavity on a chip.
    Colombe Y; Steinmetz T; Dubois G; Linke F; Hunger D; Reichel J
    Nature; 2007 Nov; 450(7167):272-6. PubMed ID: 17994094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Non-Hermitian Waveguide Cavity QED with Tunable Atomic Mirrors.
    Nie W; Shi T; Liu YX; Nori F
    Phys Rev Lett; 2023 Sep; 131(10):103602. PubMed ID: 37739354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Observation of strong coupling between a micromechanical resonator and an optical cavity field.
    Gröblacher S; Hammerer K; Vanner MR; Aspelmeyer M
    Nature; 2009 Aug; 460(7256):724-7. PubMed ID: 19661913
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Heralded Bell State of Dissipative Qubits Using Classical Light in a Waveguide.
    Zhang XHH; Baranger HU
    Phys Rev Lett; 2019 Apr; 122(14):140502. PubMed ID: 31050491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantum information in cavity quantum electrodynamics: logical gates, entanglement engineering and 'Schrödinger-cat states'.
    Haroche S
    Philos Trans A Math Phys Eng Sci; 2003 Jul; 361(1808):1339-47. PubMed ID: 12869311
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Entanglement of superconducting qubits via acceleration radiation.
    García-Álvarez L; Felicetti S; Rico E; Solano E; Sabín C
    Sci Rep; 2017 Apr; 7(1):657. PubMed ID: 28386085
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Strong Coupling of Two Individually Controlled Atoms via a Nanophotonic Cavity.
    Samutpraphoot P; Đorđević T; Ocola PL; Bernien H; Senko C; Vuletić V; Lukin MD
    Phys Rev Lett; 2020 Feb; 124(6):063602. PubMed ID: 32109118
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intermittent decoherence blockade in a chiral ring environment.
    Lorenzo S; Longhi S; Cabot A; Zambrini R; Giorgi GL
    Sci Rep; 2021 Jun; 11(1):12834. PubMed ID: 34145329
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dissipative production of a maximally entangled steady state of two quantum bits.
    Lin Y; Gaebler JP; Reiter F; Tan TR; Bowler R; Sørensen AS; Leibfried D; Wineland DJ
    Nature; 2013 Dec; 504(7480):415-8. PubMed ID: 24270806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Implementation of a quantum metamaterial using superconducting qubits.
    Macha P; Oelsner G; Reiner JM; Marthaler M; André S; Schön G; Hübner U; Meyer HG; Il'ichev E; Ustinov AV
    Nat Commun; 2014 Oct; 5():5146. PubMed ID: 25312205
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Super-radiance reveals infinite-range dipole interactions through a nanofiber.
    Solano P; Barberis-Blostein P; Fatemi FK; Orozco LA; Rolston SL
    Nat Commun; 2017 Nov; 8(1):1857. PubMed ID: 29187739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atom-atom interactions around the band edge of a photonic crystal waveguide.
    Hood JD; Goban A; Asenjo-Garcia A; Lu M; Yu SP; Chang DE; Kimble HJ
    Proc Natl Acad Sci U S A; 2016 Sep; 113(38):10507-12. PubMed ID: 27582467
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spontaneous emission of matter waves from a tunable open quantum system.
    Krinner L; Stewart M; Pazmiño A; Kwon J; Schneble D
    Nature; 2018 Jul; 559(7715):589-592. PubMed ID: 30046077
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strong coupling in a single quantum dot-semiconductor microcavity system.
    Reithmaier JP; Sek G; Löffler A; Hofmann C; Kuhn S; Reitzenstein S; Keldysh LV; Kulakovskii VD; Reinecke TL; Forchel A
    Nature; 2004 Nov; 432(7014):197-200. PubMed ID: 15538362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.