These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 3109346)
41. Determination of the extracellular lipases of Pseudomonas fluorescens spp. in skim milk with the beta-naphthyl caprylate assay. McKellar RC; Cholette H J Dairy Res; 1986 May; 53(2):301-12. PubMed ID: 3088074 [TBL] [Abstract][Full Text] [Related]
42. Lipase and acidic phosphatase from the psychrotrophic bacterium Pseudomonas fluorescens: two enzymes whose synthesis is regulated by the growth temperature. Burini JF; Gügi B; Merieau A; Guespin-Michel JF FEMS Microbiol Lett; 1994 Sep; 122(1-2):13-8. PubMed ID: 7958764 [TBL] [Abstract][Full Text] [Related]
43. Involvement of nitrate reductase and pyoverdine in competitiveness of Pseudomonas fluorescens strain C7R12 in soil. Mirleau P; Philippot L; Corberand T; Lemanceau P Appl Environ Microbiol; 2001 Jun; 67(6):2627-35. PubMed ID: 11375173 [TBL] [Abstract][Full Text] [Related]
44. Effects of iron(III) analogs on growth and pseudobactin synthesis in a chromiumtolerant Pseudomonas isolate. Fekete FA; Barton LL Biol Met; 1991; 4(4):211-6. PubMed ID: 1777356 [TBL] [Abstract][Full Text] [Related]
45. Enhanced production of ATP-binding cassette protein exporter-dependent lipase by modifying the growth medium components of Pseudomonas fluorescens. Eom GT; Song JK Biotechnol Lett; 2014 Aug; 36(8):1687-92. PubMed ID: 24737082 [TBL] [Abstract][Full Text] [Related]
46. Quantitative studies of heat-stable proteinase from Pseudomonas fluorescens P1 by the enzyme-linked immunosorbent assay. Birkeland SE; Stepaniak L; Sørhaug T Appl Environ Microbiol; 1985 Feb; 49(2):382-7. PubMed ID: 3920965 [TBL] [Abstract][Full Text] [Related]
47. Cloning and expression of a novel lipase gene from Pseudomonas fluorescens B52. Jiang Z; Zheng Y; Luo Y; Wang G; Wang H; Ma Y; Wei D Mol Biotechnol; 2005 Oct; 31(2):95-101. PubMed ID: 16170209 [TBL] [Abstract][Full Text] [Related]
48. Fluorescent Pseudomonas mainly produce the dihydro form of pyoverdine at low specific growth rate. Jacques P; Ongena M; Bernard F; Fuchs R; Budzikiewicz H; Thonart P Lett Appl Microbiol; 2003; 36(5):259-62. PubMed ID: 12680934 [TBL] [Abstract][Full Text] [Related]
49. Synthesis, iron(III) complexation properties, molecular dynamics simulations and P. aeruginosa siderophore-like activity of two pyoverdine analogs. Antonietti V; Boudesocque S; Dupont L; Farvacques N; Cézard C; Da Nascimento S; Raimbert JF; Socrier L; Robin TJ; Morandat S; El Kirat K; Mullié C; Sonnet P Eur J Med Chem; 2017 Sep; 137():338-350. PubMed ID: 28614758 [TBL] [Abstract][Full Text] [Related]
50. Production of proteases by psychrotrophic microorganisms. Kohlmann KL; Nielsen SS; Steenson LR; Ladisch MR J Dairy Sci; 1991 Oct; 74(10):3275-83. PubMed ID: 1744258 [TBL] [Abstract][Full Text] [Related]
51. Siderophore-mediated cell signalling in Pseudomonas aeruginosa: divergent pathways regulate virulence factor production and siderophore receptor synthesis. Beare PA; For RJ; Martin LW; Lamont IL Mol Microbiol; 2003 Jan; 47(1):195-207. PubMed ID: 12492864 [TBL] [Abstract][Full Text] [Related]
52. [Exolipases of some Pseudomonas species]. Bashkatova NA; Severina LO Mikrobiologiia; 1978; 47(2):234-40. PubMed ID: 96317 [TBL] [Abstract][Full Text] [Related]
53. The ferripyoverdine receptor FpvA of Pseudomonas aeruginosa PAO1 recognizes the ferripyoverdines of P. aeruginosa PAO1 and P. fluorescens ATCC 13525. Meyer JM; Stintzi A; Poole K FEMS Microbiol Lett; 1999 Jan; 170(1):145-50. PubMed ID: 9919663 [TBL] [Abstract][Full Text] [Related]
54. Synthesis and iron-binding properties of quinolobactin, a siderophore from a pyoverdine-deficient Pseudomonas fluorescens. du Dhardemare AM; Serratrice G; Pierre JL Biometals; 2004 Dec; 17(6):691-7. PubMed ID: 15689111 [TBL] [Abstract][Full Text] [Related]
55. Effects of growth rate on the production of Pseudomonas fluorescens lipase during the fed-batch cultivation of Escherichia coli. Kim SS; Kim EK; Rhee JS Biotechnol Prog; 1996; 12(5):718-22. PubMed ID: 8879159 [TBL] [Abstract][Full Text] [Related]
56. Cloning and sequence analysis of an EnvCD homologue in Pseudomonas aeruginosa: regulation by iron and possible involvement in the secretion of the siderophore pyoverdine. Poole K; Heinrichs DE; Neshat S Mol Microbiol; 1993 Nov; 10(3):529-44. PubMed ID: 7968531 [TBL] [Abstract][Full Text] [Related]
57. Manothermosonication of heat-resistant lipase and protease from Pseudomonas fluorescens: effect of pH and sonication parameters. Vercet A; Burgos J; Lopez-Buesa P J Dairy Res; 2002 May; 69(2):243-54. PubMed ID: 12222802 [TBL] [Abstract][Full Text] [Related]
58. Partial purification and characterization of the organic solvent-tolerant lipase produced by Pseudomonas fluorescens RB02-3 isolated from milk. Boran R; Ugur A Prep Biochem Biotechnol; 2010; 40(4):229-41. PubMed ID: 21108127 [TBL] [Abstract][Full Text] [Related]
59. Enlightening mineral iron sensing in Pseudomonas fluorescens by surface active maghemite nanoparticles: Involvement of the OprF porin. Magro M; Fasolato L; Bonaiuto E; Andreani NA; Baratella D; Corraducci V; Miotto G; Cardazzo B; Vianello F Biochim Biophys Acta; 2016 Oct; 1860(10):2202-10. PubMed ID: 27155575 [TBL] [Abstract][Full Text] [Related]
60. Predictive modeling of siderphore production by Pseudomonas fluorescens under iron limitation. Fgaier H; Feher B; McKellar RC; Eberl HJ J Theor Biol; 2008 Mar; 251(2):348-62. PubMed ID: 18191154 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]