These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 31093591)

  • 1. A spinor Bose-Einstein condensate phase-sensitive amplifier for SU(1,1) interferometry.
    Wrubel JP; Schwettmann A; Fahey DP; Glassman Z; Pechkis HK; Griffin PF; Barnett R; Tiesinga E; Lett PD
    Phys Rev A (Coll Park); 2018; 98():. PubMed ID: 31093591
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SU(2)-in-SU(1,1) Nested Interferometer for High Sensitivity, Loss-Tolerant Quantum Metrology.
    Du W; Kong J; Bao G; Yang P; Jia J; Ming S; Yuan CH; Chen JF; Ou ZY; Mitchell MW; Zhang W
    Phys Rev Lett; 2022 Jan; 128(3):033601. PubMed ID: 35119880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of dipolar interactions on the sensitivity of nonlinear spinor-BEC interterometry.
    Tan QS; Xie QT; Kuang LM
    Sci Rep; 2018 Feb; 8(1):3218. PubMed ID: 29459778
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integrated Mach-Zehnder interferometer for Bose-Einstein condensates.
    Berrada T; van Frank S; Bücker R; Schumm T; Schaff JF; Schmiedmayer J
    Nat Commun; 2013; 4():2077. PubMed ID: 23804159
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultra-sensitive phase measurement based on an SU(1,1) interferometer employing external resources and substract intensity detection.
    Liu J; Wang Y; Zhang M; Wang J; Wei D; Gao H
    Opt Express; 2020 Dec; 28(26):39443-39452. PubMed ID: 33379493
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Spin echo in spinor dipolar Bose-Einstein condensates.
    Yasunaga M; Tsubota M
    Phys Rev Lett; 2008 Nov; 101(22):220401. PubMed ID: 19113463
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Simultaneous Precision Gravimetry and Magnetic Gradiometry with a Bose-Einstein Condensate: A High Precision, Quantum Sensor.
    Hardman KS; Everitt PJ; McDonald GD; Manju P; Wigley PB; Sooriyabandara MA; Kuhn CC; Debs JE; Close JD; Robins NP
    Phys Rev Lett; 2016 Sep; 117(13):138501. PubMed ID: 27715130
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Beating the classical precision limit with spin-1 Dicke states of more than 10,000 atoms.
    Zou YQ; Wu LN; Liu Q; Luo XY; Guo SF; Cao JH; Tey MK; You L
    Proc Natl Acad Sci U S A; 2018 Jun; 115(25):6381-6385. PubMed ID: 29858344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Detection Loss Tolerant Supersensitive Phase Measurement with an SU(1,1) Interferometer.
    Manceau M; Leuchs G; Khalili F; Chekhova M
    Phys Rev Lett; 2017 Dec; 119(22):223604. PubMed ID: 29286807
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Matter-wave interferometry with phase fluctuating Bose-Einstein condensates.
    Jo GB; Choi JH; Christensen CA; Lee YR; Pasquini TA; Ketterle W; Pritchard DE
    Phys Rev Lett; 2007 Dec; 99(24):240406. PubMed ID: 18233429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Pumped-Up SU(1,1) Interferometry.
    Szigeti SS; Lewis-Swan RJ; Haine SA
    Phys Rev Lett; 2017 Apr; 118(15):150401. PubMed ID: 28452550
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Interferometry with Bose-Einstein condensates in microgravity.
    Müntinga H; Ahlers H; Krutzik M; Wenzlawski A; Arnold S; Becker D; Bongs K; Dittus H; Duncker H; Gaaloul N; Gherasim C; Giese E; Grzeschik C; Hänsch TW; Hellmig O; Herr W; Herrmann S; Kajari E; Kleinert S; Lämmerzahl C; Lewoczko-Adamczyk W; Malcolm J; Meyer N; Nolte R; Peters A; Popp M; Reichel J; Roura A; Rudolph J; Schiemangk M; Schneider M; Seidel ST; Sengstock K; Tamma V; Valenzuela T; Vogel A; Walser R; Wendrich T; Windpassinger P; Zeller W; van Zoest T; Ertmer W; Schleich WP; Rasel EM
    Phys Rev Lett; 2013 Mar; 110(9):093602. PubMed ID: 23496709
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nonlinear atom interferometer surpasses classical precision limit.
    Gross C; Zibold T; Nicklas E; Estève J; Oberthaler MK
    Nature; 2010 Apr; 464(7292):1165-9. PubMed ID: 20357767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 85Rb tunable-interaction Bose-Einstein condensate machine.
    Altin PA; Robins NP; Döring D; Debs JE; Poldy R; Figl C; Close JD
    Rev Sci Instrum; 2010 Jun; 81(6):063103. PubMed ID: 20590221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. All-optical formation of an atomic Bose-Einstein condensate.
    Barrett MD; Sauer JA; Chapman MS
    Phys Rev Lett; 2001 Jul; 87(1):010404. PubMed ID: 11461452
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bell Inequality, Einstein-Podolsky-Rosen Steering, and Quantum Metrology with Spinor Bose-Einstein Condensates.
    Wasak T; Chwedeńczuk J
    Phys Rev Lett; 2018 Apr; 120(14):140406. PubMed ID: 29694142
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spinor dynamics-driven formation of a dual-beam atom laser.
    Lundblad N; Thompson RJ; Aveline DC; Maleki L
    Opt Express; 2006 Oct; 14(22):10164-70. PubMed ID: 19529412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Theory of single-shot phase contrast imaging in spinor Bose-Einstein condensates.
    Ilo-Okeke EO; Byrnes T
    Phys Rev Lett; 2014 Jun; 112(23):233602. PubMed ID: 24972207
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Spin-Orbit-Coupled Interferometry with Ring-Trapped Bose-Einstein Condensates.
    Helm JL; Billam TP; Rakonjac A; Cornish SL; Gardiner SA
    Phys Rev Lett; 2018 Feb; 120(6):063201. PubMed ID: 29481231
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exact analysis of soliton dynamics in spinor Bose-Einstein condensates.
    Ieda J; Miyakawa T; Wadati M
    Phys Rev Lett; 2004 Nov; 93(19):194102. PubMed ID: 15600837
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.