These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 31093676)

  • 1. Protein Melting Temperature Cannot Fully Assess Whether Protein Folding Free Energy Underlies the Universal Abundance-Evolutionary Rate Correlation Seen in Proteins.
    Razban RM
    Mol Biol Evol; 2019 Sep; 36(9):1955-1963. PubMed ID: 31093676
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Avoidance of protein unfolding constrains protein stability in long-term evolution.
    Razban RM; Dasmeh P; Serohijos AWR; Shakhnovich EI
    Biophys J; 2021 Jun; 120(12):2413-2424. PubMed ID: 33932438
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Abundant Proteins Are Highly Thermostable.
    Luzuriaga-Neira AR; Ritchie AM; Payne BL; Carrillo-Parramon O; Liberles DA; Alvarez-Ponce D
    Genome Biol Evol; 2023 Jul; 15(7):. PubMed ID: 37399326
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Relationship between the Misfolding Avoidance Hypothesis and Protein Evolutionary Rates in the Light of Empirical Evidence.
    Usmanova DR; Plata G; Vitkup D
    Genome Biol Evol; 2021 Feb; 13(2):. PubMed ID: 33432359
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protein Stability and Avoidance of Toxic Misfolding Do Not Explain the Sequence Constraints of Highly Expressed Proteins.
    Plata G; Vitkup D
    Mol Biol Evol; 2018 Mar; 35(3):700-703. PubMed ID: 29309671
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein biophysics explains why highly abundant proteins evolve slowly.
    Serohijos AW; Rimas Z; Shakhnovich EI
    Cell Rep; 2012 Aug; 2(2):249-56. PubMed ID: 22938865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Melting temperature highlights functionally important RNA structure and sequence elements in yeast mRNA coding regions.
    Qi F; Frishman D
    Nucleic Acids Res; 2017 Jun; 45(10):6109-6118. PubMed ID: 28335026
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cellular crowding imposes global constraints on the chemistry and evolution of proteomes.
    Levy ED; De S; Teichmann SA
    Proc Natl Acad Sci U S A; 2012 Dec; 109(50):20461-6. PubMed ID: 23184996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Impact of translational error-induced and error-free misfolding on the rate of protein evolution.
    Yang JR; Zhuang SM; Zhang J
    Mol Syst Biol; 2010 Oct; 6():421. PubMed ID: 20959819
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chaperone client proteins evolve slower than non-client proteins.
    Victor MP; Acharya D; Chakraborty S; Ghosh TC
    Funct Integr Genomics; 2020 Sep; 20(5):621-631. PubMed ID: 32377887
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High thermal stability of 3-isopropylmalate dehydrogenase from Thermus thermophilus resulting from low DeltaC(p) of unfolding.
    Motono C; Oshima T; Yamagishi A
    Protein Eng; 2001 Dec; 14(12):961-6. PubMed ID: 11809926
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamic system drift in protein evolution.
    Hart KM; Harms MJ; Schmidt BH; Elya C; Thornton JW; Marqusee S
    PLoS Biol; 2014 Nov; 12(11):e1001994. PubMed ID: 25386647
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protein folding and binding can emerge as evolutionary spandrels through structural coupling.
    Manhart M; Morozov AV
    Proc Natl Acad Sci U S A; 2015 Feb; 112(6):1797-802. PubMed ID: 25624494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The burst-phase folding intermediate of ribonuclease H changes conformation over evolutionary history.
    Lim SA; Marqusee S
    Biopolymers; 2018 Aug; 109(8):e23086. PubMed ID: 29152711
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A model of proteostatic energy cost and its use in analysis of proteome trends and sequence evolution.
    Kepp KP; Dasmeh P
    PLoS One; 2014; 9(2):e90504. PubMed ID: 24587382
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Secreted Proteins Defy the Expression Level-Evolutionary Rate Anticorrelation.
    Feyertag F; Berninsone PM; Alvarez-Ponce D
    Mol Biol Evol; 2017 Mar; 34(3):692-706. PubMed ID: 28007979
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interplay between chaperones and protein disorder promotes the evolution of protein networks.
    Pechmann S; Frydman J
    PLoS Comput Biol; 2014 Jun; 10(6):e1003674. PubMed ID: 24968255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Selection maintaining protein stability at equilibrium.
    Miyazawa S
    J Theor Biol; 2016 Feb; 391():21-34. PubMed ID: 26678801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Common mechanism of thermostability in small α- and β-proteins studied by molecular dynamics.
    Jana K; Mehra R; Dehury B; Blundell TL; Kepp KP
    Proteins; 2020 Sep; 88(9):1233-1250. PubMed ID: 32368818
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Folding dynamics of the Trp-cage miniprotein: evidence for a native-like intermediate from combined time-resolved vibrational spectroscopy and molecular dynamics simulations.
    Meuzelaar H; Marino KA; Huerta-Viga A; Panman MR; Smeenk LE; Kettelarij AJ; van Maarseveen JH; Timmerman P; Bolhuis PG; Woutersen S
    J Phys Chem B; 2013 Oct; 117(39):11490-501. PubMed ID: 24050152
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.