BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

380 related articles for article (PubMed ID: 31093693)

  • 41. Chromatin properties of regulatory DNA probed by manipulation of transcription factors.
    Sharov AA; Nishiyama A; Qian Y; Dudekula DB; Longo DL; Schlessinger D; Ko MS
    J Comput Biol; 2014 Aug; 21(8):569-77. PubMed ID: 24918633
    [TBL] [Abstract][Full Text] [Related]  

  • 42. High-resolution mapping of transcription factor binding sites on native chromatin.
    Kasinathan S; Orsi GA; Zentner GE; Ahmad K; Henikoff S
    Nat Methods; 2014 Feb; 11(2):203-9. PubMed ID: 24336359
    [TBL] [Abstract][Full Text] [Related]  

  • 43. DeepTFactor: A deep learning-based tool for the prediction of transcription factors.
    Kim GB; Gao Y; Palsson BO; Lee SY
    Proc Natl Acad Sci U S A; 2021 Jan; 118(2):. PubMed ID: 33372147
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Multiple transcription factors contribute to inter-chromosomal interaction in yeast.
    Dai Y; Li C; Pei G; Dong X; Ding G; Zhao Z; Li Y; Jia P
    BMC Syst Biol; 2018 Dec; 12(Suppl 8):140. PubMed ID: 30577873
    [TBL] [Abstract][Full Text] [Related]  

  • 45. One Hand Clapping: detection of condition-specific transcription factor interactions from genome-wide gene activity data.
    Dümcke S; Seizl M; Etzold S; Pirkl N; Martin DE; Cramer P; Tresch A
    Nucleic Acids Res; 2012 Oct; 40(18):8883-92. PubMed ID: 22844089
    [TBL] [Abstract][Full Text] [Related]  

  • 46. SUMO Pathway Modulation of Regulatory Protein Binding at the Ribosomal DNA Locus in Saccharomyces cerevisiae.
    Gillies J; Hickey CM; Su D; Wu Z; Peng J; Hochstrasser M
    Genetics; 2016 Apr; 202(4):1377-94. PubMed ID: 26837752
    [TBL] [Abstract][Full Text] [Related]  

  • 47. A highly integrated and complex PPARGC1A transcription factor binding network in HepG2 cells.
    Charos AE; Reed BD; Raha D; Szekely AM; Weissman SM; Snyder M
    Genome Res; 2012 Sep; 22(9):1668-79. PubMed ID: 22955979
    [TBL] [Abstract][Full Text] [Related]  

  • 48. ChIP-Seq using high-throughput DNA sequencing for genome-wide identification of transcription factor binding sites.
    Lefrançois P; Zheng W; Snyder M
    Methods Enzymol; 2010; 470():77-104. PubMed ID: 20946807
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ceres: software for the integrated analysis of transcription factor binding sites and nucleosome positions in Saccharomyces cerevisiae.
    Morris RT; O'Connor TR; Wyrick JJ
    Bioinformatics; 2010 Jan; 26(2):168-74. PubMed ID: 19959498
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Regulation of pokemon 1 activity by sumoylation.
    Roh HE; Lee MN; Jeon BN; Choi WI; Kim YJ; Yu MY; Hur MW
    Cell Physiol Biochem; 2007; 20(1-4):167-80. PubMed ID: 17595526
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Genomic regions flanking E-box binding sites influence DNA binding specificity of bHLH transcription factors through DNA shape.
    Gordân R; Shen N; Dror I; Zhou T; Horton J; Rohs R; Bulyk ML
    Cell Rep; 2013 Apr; 3(4):1093-104. PubMed ID: 23562153
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A genome-wide analysis in Saccharomyces cerevisiae demonstrates the influence of chromatin modifiers on transcription.
    Steinfeld I; Shamir R; Kupiec M
    Nat Genet; 2007 Mar; 39(3):303-9. PubMed ID: 17325681
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification of mammalian transcription factors that bind to inaccessible chromatin.
    Pop RT; Pisante A; Nagy D; Martin PCN; Mikheeva LA; Hayat A; Ficz G; Zabet NR
    Nucleic Acids Res; 2023 Sep; 51(16):8480-8495. PubMed ID: 37486787
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Global SUMOylation on active chromatin is an acute heat stress response restricting transcription.
    Niskanen EA; Malinen M; Sutinen P; Toropainen S; Paakinaho V; Vihervaara A; Joutsen J; Kaikkonen MU; Sistonen L; Palvimo JJ
    Genome Biol; 2015 Jul; 16(1):153. PubMed ID: 26259101
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Asymmetric Conservation within Pairs of Co-Occurred Motifs Mediates Weak Direct Binding of Transcription Factors in ChIP-Seq Data.
    Levitsky V; Oshchepkov D; Zemlyanskaya E; Merkulova T
    Int J Mol Sci; 2020 Aug; 21(17):. PubMed ID: 32825662
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A systematic genome-wide account of binding sites for the model transcription factor Gcn4.
    Coey CT; Clark DJ
    Genome Res; 2022 Feb; 32(2):367-377. PubMed ID: 34916251
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Spatial distribution of predicted transcription factor binding sites in Drosophila ChIP peaks.
    Pettie KP; Dresch JM; Drewell RA
    Mech Dev; 2016 Aug; 141():51-61. PubMed ID: 27264535
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Genome-Wide Binding of Posterior HOXA/D Transcription Factors Reveals Subgrouping and Association with CTCF.
    Jerković I; Ibrahim DM; Andrey G; Haas S; Hansen P; Janetzki C; González Navarrete I; Robinson PN; Hecht J; Mundlos S
    PLoS Genet; 2017 Jan; 13(1):e1006567. PubMed ID: 28103242
    [TBL] [Abstract][Full Text] [Related]  

  • 59. μChIP-Seq for Genome-Wide Mapping of In Vivo TF-DNA Interactions in Arabidopsis Root Protoplasts.
    Para A; Li Y; Coruzzi GM
    Methods Mol Biol; 2018; 1761():249-261. PubMed ID: 29525963
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Yeast cell cycle transcription factors identification by variable selection criteria.
    Wang H; Wang YH; Wu WS
    Gene; 2011 Oct; 485(2):172-6. PubMed ID: 21703335
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.