These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 31094059)

  • 1. Domain-Swapping Design by Polyproline Rod Insertion.
    Shiga S; Yamanaka M; Fujiwara W; Hirota S; Goda S; Makabe K
    Chembiochem; 2019 Oct; 20(19):2454-2457. PubMed ID: 31094059
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Three-dimensional domain swapping and supramolecular protein assembly: insights from the X-ray structure of a dimeric swapped variant of human pancreatic RNase.
    Pica A; Merlino A; Buell AK; Knowles TP; Pizzo E; D'Alessio G; Sica F; Mazzarella L
    Acta Crystallogr D Biol Crystallogr; 2013 Oct; 69(Pt 10):2116-23. PubMed ID: 24100329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering domain-swapped binding interfaces by mutually exclusive folding.
    Ha JH; Karchin JM; Walker-Kopp N; Huang LS; Berry EA; Loh SN
    J Mol Biol; 2012 Mar; 416(4):495-502. PubMed ID: 22245575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amino-acid composition after loop deletion drives domain swapping.
    Nandwani N; Surana P; Udgaonkar JB; Das R; Gosavi S
    Protein Sci; 2017 Oct; 26(10):1994-2002. PubMed ID: 28710790
    [TBL] [Abstract][Full Text] [Related]  

  • 5. C-terminal β-strand swapping in a consensus-derived fibronectin Type III scaffold.
    Teplyakov A; Obmolova G; Malia TJ; Luo J; Jacobs SA; Chan W; Domingo D; Baker A; O'Neil KT; Gilliland GL
    Proteins; 2014 Jul; 82(7):1359-69. PubMed ID: 24375666
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A five-residue motif for the design of domain swapping in proteins.
    Nandwani N; Surana P; Negi H; Mascarenhas NM; Udgaonkar JB; Das R; Gosavi S
    Nat Commun; 2019 Jan; 10(1):452. PubMed ID: 30692525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human Cellular Retinol Binding Protein II Forms a Domain-Swapped Trimer Representing a Novel Fold and a New Template for Protein Engineering.
    Ghanbarpour A; Santos EM; Pinger C; Assar Z; Hossaini Nasr S; Vasileiou C; Spence D; Borhan B; Geiger JH
    Chembiochem; 2020 Nov; 21(22):3192-3196. PubMed ID: 32608180
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Domain-swapped dimer of Pseudomonas aeruginosa cytochrome c551: structural insights into domain swapping of cytochrome c family proteins.
    Nagao S; Ueda M; Osuka H; Komori H; Kamikubo H; Kataoka M; Higuchi Y; Hirota S
    PLoS One; 2015; 10(4):e0123653. PubMed ID: 25853415
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The structure of an engineered domain-swapped ribonuclease dimer and its implications for the evolution of proteins toward oligomerization.
    Canals A; Pous J; Guasch A; Benito A; Ribó M; Vilanova M; Coll M
    Structure; 2001 Oct; 9(10):967-76. PubMed ID: 11591351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Different 3D domain-swapped oligomeric cyanovirin-N structures suggest trapped folding intermediates.
    Koharudin LM; Liu L; Gronenborn AM
    Proc Natl Acad Sci U S A; 2013 May; 110(19):7702-7. PubMed ID: 23610431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Using Molecular Dynamics Simulations as an Aid in the Prediction of Domain Swapping of Computationally Designed Protein Variants.
    Mou Y; Huang PS; Thomas LM; Mayo SL
    J Mol Biol; 2015 Aug; 427(16):2697-706. PubMed ID: 26101839
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biophysical analysis of the MHR motif in folding and domain swapping of the HIV capsid protein C-terminal domain.
    Bocanegra R; Fuertes MÁ; Rodríguez-Huete A; Neira JL; Mateu MG
    Biophys J; 2015 Jan; 108(2):338-49. PubMed ID: 25606682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermodynamic Control of Domain Swapping by Modulating the Helical Propensity in the Hinge Region of Myoglobin.
    Nagao S; Suda A; Kobayashi H; Shibata N; Higuchi Y; Hirota S
    Chem Asian J; 2020 Jun; 15(11):1743-1749. PubMed ID: 32329228
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural basis for polyproline recognition by the FE65 WW domain.
    Meiyappan M; Birrane G; Ladias JAA
    J Mol Biol; 2007 Sep; 372(4):970-980. PubMed ID: 17686488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dimer domain swapping versus monomer folding in apo-myoglobin studied by molecular simulations.
    Ono K; Ito M; Hirota S; Takada S
    Phys Chem Chem Phys; 2015 Feb; 17(7):5006-13. PubMed ID: 25591933
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structural and functional analyses of PolyProline-II helices in globular proteins.
    Kumar P; Bansal M
    J Struct Biol; 2016 Dec; 196(3):414-425. PubMed ID: 27637571
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Domain swapping in materials design.
    Nagarkar RP; Hule RA; Pochan DJ; Schneider JP
    Biopolymers; 2010; 94(1):141-55. PubMed ID: 20091872
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural Properties and Stereochemically Distinct Folding Preferences of 4,5-cis and trans-Methano-L-Proline Oligomers: The Shortest Crystalline PPII-Type Helical Proline-Derived Tetramer.
    Berger G; Vilchis-Reyes M; Hanessian S
    Angew Chem Int Ed Engl; 2015 Nov; 54(45):13268-72. PubMed ID: 26346999
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impacts of terminal (4R)-fluoroproline and (4S)-fluoroproline residues on polyproline conformation.
    Lin YJ; Horng JC
    Amino Acids; 2014 Oct; 46(10):2317-24. PubMed ID: 24947982
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design of three-dimensional domain-swapped dimers and fibrous oligomers.
    Ogihara NL; Ghirlanda G; Bryson JW; Gingery M; DeGrado WF; Eisenberg D
    Proc Natl Acad Sci U S A; 2001 Feb; 98(4):1404-9. PubMed ID: 11171963
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.