These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
174 related articles for article (PubMed ID: 31094190)
1. Chemical Wave Propagation in the Belousov-Zhabotinsky Reaction Controlled by Electrical Potential. Kuze M; Horisaka M; Suematsu NJ; Amemiya T; Steinbock O; Nakata S J Phys Chem A; 2019 Jun; 123(23):4853-4857. PubMed ID: 31094190 [TBL] [Abstract][Full Text] [Related]
2. Traveling waves propagating through coupled microbeads in the Belousov-Zhabotinsky reaction. Kuze M; Kitahata H; Nakata S Phys Chem Chem Phys; 2021 Nov; 23(42):24175-24179. PubMed ID: 34673865 [TBL] [Abstract][Full Text] [Related]
3. Switching between Two Oscillatory States Depending on the Electrical Potential. Kuze M; Horisaka M; Suematsu NJ; Amemiya T; Steinbock O; Nakata S J Phys Chem B; 2021 Apr; 125(14):3638-3643. PubMed ID: 33797905 [TBL] [Abstract][Full Text] [Related]
4. Distinguishing the Dynamic Fingerprints of Two- and Three-Dimensional Chemical Waves in Microbeads. Kuze M; Kitahata H; Steinbock O; Nakata S J Phys Chem A; 2018 Mar; 122(8):1967-1971. PubMed ID: 29419297 [TBL] [Abstract][Full Text] [Related]
5. The effect of acetone on the dynamics of temporal oscillations and waves in the ruthenium-catalyzed Belousov-Zhabotinsky reaction. Somboon T; Wilairat P; Müller SC; Kheowan OU Phys Chem Chem Phys; 2015 Mar; 17(11):7114-21. PubMed ID: 25684352 [TBL] [Abstract][Full Text] [Related]
6. Coexistence of oscillatory and reduced states on a spherical field controlled by electrical potential. Kubodera Y; Horisaka M; Kuze M; Suematsu NJ; Amemiya T; Steinbock O; Nakata S Chaos; 2022 Jul; 32(7):073103. PubMed ID: 35907716 [TBL] [Abstract][Full Text] [Related]
7. Estimation of the activation energy in the Belousov-Zhabotinsky reaction by temperature effect on excitable waves. Zhang J; Zhou L; Ouyang Q J Phys Chem A; 2007 Feb; 111(6):1052-6. PubMed ID: 17249646 [TBL] [Abstract][Full Text] [Related]
8. Thermal switch of oscillation frequency in Belousov-Zhabotinsky liquid marbles. Adamatzky A; Fullarton C; Phillips N; De Lacy Costello B; Draper TC R Soc Open Sci; 2019 Apr; 6(4):190078. PubMed ID: 31183147 [TBL] [Abstract][Full Text] [Related]
9. Effect of Reaction Parameters on the Wavelength of Pulse Waves in the Belousov-Zhabotinsky Reaction-Diffusion System. Teng R; Ren L; Yuan L; Wang L; Gao Q; Epstein IR J Phys Chem A; 2019 Oct; 123(43):9292-9297. PubMed ID: 31580676 [TBL] [Abstract][Full Text] [Related]
10. Instability of the Homogeneous Distribution of Chemical Waves in the Belousov-Zhabotinsky Reaction. Suematsu NJ; Nakata S Materials (Basel); 2021 Oct; 14(20):. PubMed ID: 34683766 [TBL] [Abstract][Full Text] [Related]
11. Chemical wave propagation preserved on an inhibitory field in the ruthenium-catalyzed Belousov-Zhabotinsky reaction. Nakata S; Ezaki T; Ikura YS; Kitahata H J Phys Chem A; 2013 Oct; 117(41):10615-8. PubMed ID: 24044665 [TBL] [Abstract][Full Text] [Related]
12. Chemical waves in self-oscillating gels. Miyakawa K; Sakamoto F; Yoshida R; Kokufuta E; Yamaguchi T Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics; 2000 Jul; 62(1 Pt B):793-8. PubMed ID: 11088535 [TBL] [Abstract][Full Text] [Related]
13. Controlling chemical oscillations in heterogeneous Belousov-Zhabotinsky gels via mechanical strain. Yashin VV; Van Vliet KJ; Balazs AC Phys Rev E Stat Nonlin Soft Matter Phys; 2009 Apr; 79(4 Pt 2):046214. PubMed ID: 19518319 [TBL] [Abstract][Full Text] [Related]
14. Complex oscillations in the Belousov-Zhabotinsky batch reaction with methylmalonic acid and manganese(ii). Frerichs GA; Yengi D RSC Adv; 2021 Apr; 11(27):16435-16444. PubMed ID: 35479119 [TBL] [Abstract][Full Text] [Related]
15. Self-oscillating chemoelectrical interface of solution-gated ion-sensitive field-effect transistor based on Belousov-Zhabotinsky reaction. Sakata T; Nishitani S; Yasuoka Y; Himori S; Homma K; Masuda T; Akimoto AM; Sawada K; Yoshida R Sci Rep; 2022 Feb; 12(1):2949. PubMed ID: 35194095 [TBL] [Abstract][Full Text] [Related]
16. Coexistence of wave propagation and oscillation in the photosensitive Belousov-Zhabotinsky reaction on a circular route. Nakata S; Morishima S; Ichino T; Kitahata H J Phys Chem A; 2006 Dec; 110(50):13475-8. PubMed ID: 17165872 [TBL] [Abstract][Full Text] [Related]
17. Chemical memory with states coded in light controlled oscillations of interacting Belousov-Zhabotinsky droplets. Gizynski K; Gorecki J Phys Chem Chem Phys; 2017 Mar; 19(9):6519-6531. PubMed ID: 28197558 [TBL] [Abstract][Full Text] [Related]
18. Response of a chemical wave to local pulse irradiation in the ruthenium-catalyzed Belousov-Zhabotinsky reaction. Nakata S; Suzuki S; Ezaki T; Kitahata H; Nishi K; Nishiura Y Phys Chem Chem Phys; 2015 Apr; 17(14):9148-52. PubMed ID: 25757627 [TBL] [Abstract][Full Text] [Related]
19. Density changes accompanying wave propagation in the cerium-catalyzed Belousov-Zhabotinsky reaction. Kasuya M; Hatanaka K; Hobley J; Fukumura H; Sevcíkova H J Phys Chem A; 2005 Feb; 109(7):1405-10. PubMed ID: 16833458 [TBL] [Abstract][Full Text] [Related]
20. Impact of PDMS-Based Microfluidics on Belousov-Zhabotinsky Chemical Oscillators. Sheehy J; Hunter I; Moustaka ME; Aghvami SA; Fahmy Y; Fraden S J Phys Chem B; 2020 Dec; 124(51):11690-11698. PubMed ID: 33315410 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]