These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 31094278)

  • 1. Potential use of
    Gómez-Ramírez M; Rojas-Avelizapa NG; Hernández-Gama R; Tenorio-Sánchez SA; López-Villegas EO
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(8):701-710. PubMed ID: 31094278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Metal removal and morphological changes of B. megaterium in the presence of a spent catalyst.
    Rivas-Castillo AM; Guatemala-Cisneros ME; Gómez-Ramírez M; Rojas-Avelizapa NG
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2019; 54(6):533-540. PubMed ID: 30755080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbacterium oxydans and Microbacterium liquefaciens: a biological alternative for the treatment of Ni-V-containing wastes.
    Gómez-Ramírez M; Montero-Álvarez LA; Tobón-Avilés A; Fierros-Romero G; Rojas-Avelizapa NG
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(6):602-10. PubMed ID: 25837562
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Identification of Bacillus megaterium and Microbacterium liquefaciens genes involved in metal resistance and metal removal.
    Fierros-Romero G; Gómez-Ramírez M; Arenas-Isaac GE; Pless RC; Rojas-Avelizapa NG
    Can J Microbiol; 2016 Jun; 62(6):505-13. PubMed ID: 27210016
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Expression Analysis of Ni- and V-Associated Resistance Genes in a Bacillus megaterium Strain Isolated from a Mining Site.
    Fierros Romero G; Rivas Castillo A; Gómez Ramírez M; Pless R; Rojas Avelizapa N
    Curr Microbiol; 2016 Aug; 73(2):165-71. PubMed ID: 27107759
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in the fractionation profile of Al, Ni, and Mo during bioleaching of spent hydroprocessing catalysts with Acidithiobacillus ferrooxidans.
    Pathak A; Healy MG; Morrison L
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018; 53(11):1006-1014. PubMed ID: 29869939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. czcD gene from Bacillus megaterium and Microbacterium liquefaciens as a potential nickel-vanadium soil pollution biomarker.
    Fierros-Romero G; Gómez-Ramírez M; Sharma A; Pless RC; Rojas-Avelizapa NG
    J Basic Microbiol; 2020 Jan; 60(1):22-26. PubMed ID: 31692013
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metal leaching from refinery waste hydroprocessing catalyst.
    Marafi M; Rana MS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018; 53(11):951-959. PubMed ID: 29775124
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosurfactant-facilitated leaching of metals from spent hydrodesulphurization catalyst.
    Alsaqer S; Marafi M; Banat IM; Ismail W
    J Appl Microbiol; 2018 Nov; 125(5):1358-1369. PubMed ID: 29964351
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A review of metal recovery from spent petroleum catalysts and ash.
    Akcil A; Vegliò F; Ferella F; Okudan MD; Tuncuk A
    Waste Manag; 2015 Nov; 45():420-33. PubMed ID: 26188611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial diversity of Emalahleni mine water in South Africa and tolerance ability of the predominant organism to vanadium and nickel.
    Kamika I; Momba MN
    PLoS One; 2014; 9(1):e86189. PubMed ID: 24465951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sulfate and metal removal in bioreactors treating acid mine drainage dominated with iron and aluminum.
    McCauley CA; O'Sullivan AD; Milke MW; Weber PA; Trumm DA
    Water Res; 2009 Mar; 43(4):961-70. PubMed ID: 19070349
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mercury(II) removal from aqueous solutions by nonviable Bacillus sp. from a tropical estuary.
    Green-Ruiz C
    Bioresour Technol; 2006 Oct; 97(15):1907-11. PubMed ID: 16219462
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nickel recovery from spent Raneynickel catalyst through dilute sulfuric acid leaching and soda ash precipitation.
    Lee JY; Rao SV; Kumar BN; Kang DJ; Reddy BR
    J Hazard Mater; 2010 Apr; 176(1-3):1122-5. PubMed ID: 20018448
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of bio-sludge concentration on the efficiency of sequencing batch reactor (SBR) system to treat wastewater containing Pb2+ and Ni2+.
    Sirianuntapiboon S; Boonchupleing M
    J Hazard Mater; 2009 Jul; 166(1):356-64. PubMed ID: 19097695
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Extraction of nickel from spent catalyst using fresh and recovered EDTA.
    Goel S; Pant KK; Nigam KD
    J Hazard Mater; 2009 Nov; 171(1-3):253-61. PubMed ID: 19553011
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chromium tolerance and reduction potential of a Bacillus sp.ev3 isolated from metal contaminated wastewater.
    Rehman A; Zahoor A; Muneer B; Hasnain S
    Bull Environ Contam Toxicol; 2008 Jul; 81(1):25-9. PubMed ID: 18498008
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression Changes in Metal-Resistance Genes in Microbacterium liquefaciens Under Nickel and Vanadium Exposure.
    Fierros-Romero G; Wrosek-Cabrera JA; Gómez-Ramírez M; Pless RC; Rivas-Castillo AM; Rojas-Avelizapa NG
    Curr Microbiol; 2017 Jul; 74(7):840-847. PubMed ID: 28447152
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An environmentally friendly process for the recovery of valuable metals from spent refinery catalysts.
    Rocchetti L; Fonti V; Vegliò F; Beolchini F
    Waste Manag Res; 2013 Jun; 31(6):568-76. PubMed ID: 23393098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of nickel from aqueous solution by the bacterium Bacillus thuringiensis.
    Oztürk A
    J Hazard Mater; 2007 Aug; 147(1-2):518-23. PubMed ID: 17320284
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.