These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 31094278)

  • 21. Use of adapted Aspergillus niger in the bioleaching of spent refinery processing catalyst.
    Santhiya D; Ting YP
    J Biotechnol; 2006 Jan; 121(1):62-74. PubMed ID: 16105700
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioleaching of spent hydrotreating catalyst by acidophilic thermophile Acidianus brierleyi: Leaching mechanism and effect of decoking.
    Bharadwaj A; Ting YP
    Bioresour Technol; 2013 Feb; 130():673-80. PubMed ID: 23334026
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioleaching of metals from spent refinery petroleum catalyst using moderately thermophilic bacteria: effect of particle size.
    Srichandan H; Singh S; Pathak A; Kim DJ; Lee SW; Heyes G
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2014; 49(7):807-18. PubMed ID: 24679088
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Lead and vanadium removal from a real industrial wastewater by gravitational settling/sedimentation and sorption onto Pinus sylvestris sawdust.
    Kaczala F; Marques M; Hogland W
    Bioresour Technol; 2009 Jan; 100(1):235-43. PubMed ID: 18664408
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Removal of some heavy metals by CKD leachate.
    Zaki NG; Khattab IA; Abd El-Monem NM
    J Hazard Mater; 2007 Aug; 147(1-2):21-7. PubMed ID: 17275181
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An immobilized cell bioprocess for the removal of heavy metals from aqueous flows.
    Macaskie LE
    J Chem Technol Biotechnol; 1990; 49(4):357-79. PubMed ID: 1366967
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Isolation and characterization of alkalotolerant bacteria and optimization of process parameters for decolorization and detoxification of pulp and paper mill effluent by Taguchi approach.
    Mishra M; Thakur IS
    Biodegradation; 2010 Nov; 21(6):967-78. PubMed ID: 20401684
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bioleaching of tungsten-rich spent hydrocracking catalyst using Penicillium simplicissimum.
    Amiri F; Yaghmaei S; Mousavi SM
    Bioresour Technol; 2011 Jan; 102(2):1567-73. PubMed ID: 20863693
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Platinum and rhenium extraction from a spent refinery catalyst using Bacillus megaterium as a cyanogenic bacterium: statistical modeling and process optimization.
    Motaghed M; Mousavi SM; Rastegar SO; Shojaosadati SA
    Bioresour Technol; 2014 Nov; 171():401-9. PubMed ID: 25226056
    [TBL] [Abstract][Full Text] [Related]  

  • 30. [The concentration of heavy metals from a micromycete biomass using zeolites].
    Oliferchuk VP; Lebedinets LO; Sukhomlin MN
    Mikrobiol Z; 1996; 58(1):46-50. PubMed ID: 8777467
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates.
    Congeevaram S; Dhanarani S; Park J; Dexilin M; Thamaraiselvi K
    J Hazard Mater; 2007 Jul; 146(1-2):270-7. PubMed ID: 17218056
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Influence of inorganic anions on metals release from oil sands coke and on toxicity of nickel and vanadium to Ceriodaphnia dubia.
    Puttaswamy N; Liber K
    Chemosphere; 2012 Feb; 86(5):521-9. PubMed ID: 22138340
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhancement of heavy metal phytoremediation by Alnus firma with endophytic Bacillus thuringiensis GDB-1.
    Babu AG; Kim JD; Oh BT
    J Hazard Mater; 2013 Apr; 250-251():477-83. PubMed ID: 23500429
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Recovery of rare metal compounds from nickel-metal hydride battery waste and their application to CH4 dry reforming catalyst.
    Kanamori T; Matsuda M; Miyake M
    J Hazard Mater; 2009 Sep; 169(1-3):240-5. PubMed ID: 19395161
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Removal of AOX, total nitrogen and chlorinated lignin from bleached Kraft mill effluents by UV oxidation in the presence of hydrogen peroxide utilizing TiO(2) as photocatalyst.
    Uğurlu M; Karaoğlu MH
    Environ Sci Pollut Res Int; 2009 May; 16(3):265-73. PubMed ID: 18839234
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electrokinetic enhancement removal of heavy metals from industrial wastewater sludge.
    Yuan C; Weng CH
    Chemosphere; 2006 Sep; 65(1):88-96. PubMed ID: 16643980
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Heavy metals removal from electroplating wastewater by aminopropyl-Si MCM-41.
    Algarra M; Jiménez MV; Rodríguez-Castellón E; Jiménez-López A; Jiménez-Jiménez J
    Chemosphere; 2005 May; 59(6):779-86. PubMed ID: 15811406
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Adsorption of metal complex dyes from aqueous solutions by pine sawdust.
    Ozacar M; Sengil IA
    Bioresour Technol; 2005 May; 96(7):791-5. PubMed ID: 15607192
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bioleaching kinetics and multivariate analysis of spent petroleum catalyst dissolution using two acidophiles.
    Pradhan D; Mishra D; Kim DJ; Ahn JG; Chaudhury GR; Lee SW
    J Hazard Mater; 2010 Mar; 175(1-3):267-73. PubMed ID: 19879686
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Adsorption of Pb(II), Cr(III), Cu(II), Cd(II) and Ni(II) onto a vanadium mine tailing from aqueous solution.
    Shi T; Jia S; Chen Y; Wen Y; Du C; Guo H; Wang Z
    J Hazard Mater; 2009 Sep; 169(1-3):838-46. PubMed ID: 19427115
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.