These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

109 related articles for article (PubMed ID: 31094378)

  • 1. Interplay of Coriolis effect with rheology results in unique blood dynamics on a compact disc.
    Agarwal R; Sarkar A; Chakraborty S
    Analyst; 2019 Jun; 144(12):3782-3789. PubMed ID: 31094378
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of hematocrit on blood dynamics on a compact disc platform.
    Kar S; Dash M; Maiti TK; Chakraborty S
    Analyst; 2015 Mar; 140(5):1432-7. PubMed ID: 25619412
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Anomalous mixing behaviour in rotationally actuated microfluidic devices.
    Chakraborty D; Madou M; Chakraborty S
    Lab Chip; 2011 Sep; 11(17):2823-6. PubMed ID: 21776486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automated centrifugal-microfluidic platform for DNA purification using laser burst valve and coriolis effect.
    Choi MS; Yoo JC
    Appl Biochem Biotechnol; 2015 Apr; 175(8):3778-87. PubMed ID: 25737025
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A physiometer for simultaneous measurement of whole blood viscosity and its determinants: hematocrit and red blood cell deformability.
    Kim BJ; Lee YS; Zhbanov A; Yang S
    Analyst; 2019 Apr; 144(9):3144-3157. PubMed ID: 30942211
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A lab-on-a-chip for rapid blood separation and quantification of hematocrit and serum analytes.
    Browne AW; Ramasamy L; Cripe TP; Ahn CH
    Lab Chip; 2011 Jul; 11(14):2440-6. PubMed ID: 21655589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of the Capitainer-B Microfluidic Device as a New Hematocrit-Independent Alternative for Dried Blood Spot Collection.
    Velghe S; Stove CP
    Anal Chem; 2018 Nov; 90(21):12893-12899. PubMed ID: 30256092
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Measurement of the hematocrit using paper-based microfluidic devices.
    Berry SB; Fernandes SC; Rajaratnam A; DeChiara NS; Mace CR
    Lab Chip; 2016 Oct; 16(19):3689-94. PubMed ID: 27604182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Haemoglobin content modulated deformation dynamics of red blood cells on a compact disc.
    Kar S; Ghosh U; Maiti TK; Chakraborty S
    Lab Chip; 2015 Dec; 15(24):4571-7. PubMed ID: 26502076
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Moving objects in a rotating environment: rapid prediction of Coriolis and centrifugal force perturbations.
    Nowak DA; Hermsdörfer J; Schneider E; Glasauer S
    Exp Brain Res; 2004 Jul; 157(2):241-54. PubMed ID: 15064877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microparticle and cell counting with digital microfluidic compact disc using standard CD drive.
    Imaad SM; Lord N; Kulsharova G; Liu GL
    Lab Chip; 2011 Apr; 11(8):1448-56. PubMed ID: 21350788
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lab-on-CD microfluidic platform for rapid separation and mixing of plasma from whole blood.
    Kuo JN; Li BS
    Biomed Microdevices; 2014 Aug; 16(4):549-58. PubMed ID: 24647859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rotating electroosmotic flow of power-law fluid through polyelectrolyte grafted microchannel.
    Patel M; Harish Kruthiventi SS; Kaushik P
    Colloids Surf B Biointerfaces; 2020 Sep; 193():111058. PubMed ID: 32408258
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrochemical hematocrit determination in a direct current microfluidic device.
    Lee HY; Barber C; Rogers JA; Minerick AR
    Electrophoresis; 2015 Apr; 36(7-8):978-85. PubMed ID: 25640582
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Large-volume centrifugal microfluidic device for blood plasma separation.
    Amasia M; Madou M
    Bioanalysis; 2010 Oct; 2(10):1701-10. PubMed ID: 21083322
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid Enzyme-linked Immunosorbent Assays for Diagnosis of Diabetes in a Compact Disc-shaped Microfluidic Device.
    Furutani S; Nishio K; Naruishi N; Akazawa-Ogawa Y; Hagihara Y; Yoshida Y; Nagai H
    Anal Sci; 2018; 34(3):379-382. PubMed ID: 29526909
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Uncoupling Coriolis Force and Rotating Buoyancy Effects on Full-Field Heat Transfer Properties of a Rotating Channel.
    Chang SW; Cai WL; Shen HD; Yu KC
    J Vis Exp; 2018 Oct; (140):. PubMed ID: 30346409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rapid nanoliter DNA hybridization based on reciprocating flow on a compact disk microfluidic device.
    Li C; Dong X; Qin J; Lin B
    Anal Chim Acta; 2009 Apr; 640(1-2):93-9. PubMed ID: 19362626
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gravitoinertial force background level affects adaptation to coriolis force perturbations of reaching movements.
    Lackner JR; Dizio P
    J Neurophysiol; 1998 Aug; 80(2):546-53. PubMed ID: 9705449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. On-chip estimation of hematocrit level for diagnosing anemic conditions by Impedimetric techniques.
    Chakraborty S; Das S; Das C; Chandra S; Sharma KD; Karmakar A; Chattoapadhyay S
    Biomed Microdevices; 2020 May; 22(2):38. PubMed ID: 32430696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.