These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

190 related articles for article (PubMed ID: 31094522)

  • 41. Tuning friction to a superlubric state via in-plane straining.
    Zhang S; Hou Y; Li S; Liu L; Zhang Z; Feng XQ; Li Q
    Proc Natl Acad Sci U S A; 2019 Dec; 116(49):24452-24456. PubMed ID: 31659028
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Superlubricity of a graphene/MoS
    Wang L; Zhou X; Ma T; Liu D; Gao L; Li X; Zhang J; Hu Y; Wang H; Dai Y; Luo J
    Nanoscale; 2017 Aug; 9(30):10846-10853. PubMed ID: 28726941
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Shear-Induced Interfacial Structural Conversion Triggers Macroscale Superlubricity: From Black Phosphorus Nanoflakes to Phosphorus Oxide.
    Liu Y; Li J; Li J; Yi S; Ge X; Zhang X; Luo J
    ACS Appl Mater Interfaces; 2021 Jul; 13(27):31947-31956. PubMed ID: 34190525
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Superlubricity of glycerol by self-sustained chemical polishing.
    Long Y; Bouchet MB; Lubrecht T; Onodera T; Martin JM
    Sci Rep; 2019 Apr; 9(1):6286. PubMed ID: 31000766
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Reduction of interfacial friction in commensurate graphene/h-BN heterostructures by surface functionalization.
    Guo Y; Qiu J; Guo W
    Nanoscale; 2016 Jan; 8(1):575-80. PubMed ID: 26645099
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Observation of microscale superlubricity in graphite.
    Liu Z; Yang J; Grey F; Liu JZ; Liu Y; Wang Y; Yang Y; Cheng Y; Zheng Q
    Phys Rev Lett; 2012 May; 108(20):205503. PubMed ID: 23003154
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Poly(vinylphosphonic acid) (PVPA) on titanium alloy acting as effective cartilage-like superlubricity coatings.
    Zhang C; Liu Y; Wen S; Wang S
    ACS Appl Mater Interfaces; 2014 Oct; 6(20):17571-8. PubMed ID: 25244595
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Approaches for Achieving Superlubricity in Two-Dimensional Materials.
    Berman D; Erdemir A; Sumant AV
    ACS Nano; 2018 Mar; 12(3):2122-2137. PubMed ID: 29522673
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Role of surface roughness in superlubricity.
    Tartaglino U; Samoilov VN; Persson BN
    J Phys Condens Matter; 2006 May; 18(17):4143-60. PubMed ID: 21690770
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Robust microscale superlubricity in graphite/hexagonal boron nitride layered heterojunctions.
    Song Y; Mandelli D; Hod O; Urbakh M; Ma M; Zheng Q
    Nat Mater; 2018 Oct; 17(10):894-899. PubMed ID: 30061730
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A New Pathway for Superlubricity in a Multilayered MoS
    Yin X; Jin J; Chen X; Ma T; Zhang C
    Nano Lett; 2021 Dec; 21(24):10165-10171. PubMed ID: 34889617
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mechanism of Superlubricity Conversion with Polyalkylene Glycol Aqueous Solutions.
    Liu W; Wang H; Liu Y; Li J; Erdemir A; Luo J
    Langmuir; 2019 Sep; 35(36):11784-11790. PubMed ID: 31432683
    [TBL] [Abstract][Full Text] [Related]  

  • 53. 3D-Printed Topological MoS
    Zhao Y; Mei H; Chang P; Yang Y; Huang W; Liu Y; Cheng L; Zhang L
    ACS Appl Mater Interfaces; 2021 Jul; 13(29):34984-34995. PubMed ID: 34278775
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Reduction of friction stress of ethylene glycol by attached hydrogen ions.
    Li J; Zhang C; Deng M; Luo J
    Sci Rep; 2014 Nov; 4():7226. PubMed ID: 25428584
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The high-speed sliding friction of graphene and novel routes to persistent superlubricity.
    Liu Y; Grey F; Zheng Q
    Sci Rep; 2014 May; 4():4875. PubMed ID: 24786521
    [TBL] [Abstract][Full Text] [Related]  

  • 56. AFM Studies on Liquid Superlubricity between Silica Surfaces Achieved with Surfactant Micelles.
    Li J; Zhang C; Cheng P; Chen X; Wang W; Luo J
    Langmuir; 2016 Jun; 32(22):5593-9. PubMed ID: 27192019
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Friction induced structural transformations of water monolayers at graphene/Cu interfaces.
    Cai H; Guo Y; Guo W
    Phys Chem Chem Phys; 2018 Feb; 20(6):4137-4143. PubMed ID: 29355252
    [TBL] [Abstract][Full Text] [Related]  

  • 58. 100 km wear-free sliding achieved by microscale superlubric graphite/DLC heterojunctions under ambient conditions.
    Peng D; Wang J; Jiang H; Zhao S; Wu Z; Tian K; Ma M; Zheng Q
    Natl Sci Rev; 2022 Jan; 9(1):nwab109. PubMed ID: 35070329
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Excellent Water Lubrication Additives for Silicon Nitride To Achieve Superlubricity under Extreme Conditions.
    Lin B; Ding M; Sui T; Cui Y; Yan S; Liu X
    Langmuir; 2019 Nov; 35(46):14861-14869. PubMed ID: 31663750
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Slippery and Sticky Graphene in Water.
    Diao Y; Greenwood G; Wang MC; Nam S; Espinosa-Marzal RM
    ACS Nano; 2019 Feb; 13(2):2072-2082. PubMed ID: 30629408
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.