These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 31094687)

  • 1. Gigahertz Low-Loss and Wideband S0 Mode Lithium Niobate Acoustic Delay Lines.
    Lu R; Manzaneque T; Yang Y; Li MH; Gong S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2019 Aug; 66(8):1373-1386. PubMed ID: 31094687
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GHz Broadband SH0 Mode Lithium Niobate Acoustic Delay Lines.
    Lu R; Yang Y; Li MH; Manzaneque T; Gong S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Feb; 67(2):402-412. PubMed ID: 31562076
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-Loss Unidirectional Acoustic Focusing Transducer in Thin-Film Lithium Niobate.
    Lu R; Yang Y; Gong S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Dec; 67(12):2731-2737. PubMed ID: 32746220
    [TBL] [Abstract][Full Text] [Related]  

  • 4. GHz Low-Loss Acoustic RF Couplers in Lithium Niobate Thin Film.
    Lu R; Yang Y; Li MH; Gong S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Jul; 67(7):1448-1461. PubMed ID: 32012008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Lithium Niobate Phononic Crystals for Tailoring Performance of RF Laterally Vibrating Devices.
    Lu R; Manzaneque T; Yang Y; Gong S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Jun; 65(6):934-944. PubMed ID: 29856710
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wideband Hybrid Monolithic Lithium Niobate Acoustic Filter in the K-Band.
    Gao L; Yang Y; Gong S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2021 Apr; 68(4):1408-1417. PubMed ID: 33125326
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Unidirectional Transducer Design for Scaling GHz AlN-Based RF Microsystems.
    Lu R; Link S; Gong S
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Jun; 67(6):1250-1257. PubMed ID: 31976889
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of a Solid-State Tuning Behavior in Lithium Niobate.
    Branch DW; Jensen DS; Nordquist CD; Siddiqui A; Douglas JK; Eichenfield M; Friedmann TA
    IEEE Trans Ultrason Ferroelectr Freq Control; 2020 Feb; 67(2):365-373. PubMed ID: 31567077
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental Investigation of Surface Acoustic Wave Acoustoelectric Effect Using a Graphene Film on Lithium Niobate.
    Carmichael CP; Smith MS; Weeks AR; Malocha DC
    IEEE Trans Ultrason Ferroelectr Freq Control; 2018 Nov; 65(11):2205-2207. PubMed ID: 30235124
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Low-loss waveguides on Y-cut thin film lithium niobate: towards acousto-optic applications.
    Cai L; Mahmoud A; Piazza G
    Opt Express; 2019 Apr; 27(7):9794-9802. PubMed ID: 31045128
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Optimization of single-phase, unidirectional transducers using three fingers per period.
    Shui Y; Lin JM; Wu H; Wang N; Chen H
    IEEE Trans Ultrason Ferroelectr Freq Control; 2002 Dec; 49(12):1617-21. PubMed ID: 12546142
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SPUDT filters for the 2.45 GHz ISM band.
    Lehtonen S; Plessky VP; Hartmann CS; Salomaa MM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2004 Dec; 51(12):1697-703. PubMed ID: 15690730
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unidirectional SAW transducer for gigahertz frequencies.
    Lehtonen S; Plessky VP; Hartmann CS; Salomaa MM
    IEEE Trans Ultrason Ferroelectr Freq Control; 2003 Nov; 50(11):1404-6. PubMed ID: 14682622
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mass-spring matching layers for high-frequency ultrasound transducers: a new technique using vacuum deposition.
    Brown J; Sharma S; Leadbetter J; Cochran S; Adamson R
    IEEE Trans Ultrason Ferroelectr Freq Control; 2014 Nov; 61(11):1911-21. PubMed ID: 25389169
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sampling effect of distributed reflector arrays within a single-phase unidirectional SAW transducer.
    Saw CB; Campbell CK
    IEEE Trans Ultrason Ferroelectr Freq Control; 1990; 37(2):116-7. PubMed ID: 18285022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A wideband multi-mode SAW filter employing pitch-modulated IDTs on Cu-grating/15 degrees YX-LiNbO3-substrate structure.
    Hashimoto KY; Miyamoto T; Shimada KT; Omori T; Yamaguchi M
    IEEE Trans Ultrason Ferroelectr Freq Control; 2010 May; 57(5):1183-7. PubMed ID: 20442030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Harmonic GHz surface-acoustic-wave filters with unidirectional transducers.
    Huegli R
    IEEE Trans Ultrason Ferroelectr Freq Control; 1993; 40(3):177-82. PubMed ID: 18263172
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exploring Low-Loss Surface Acoustic Wave Devices on Heterogeneous Substrates.
    Wu J; Zhang S; Zhang L; Zhou H; Zheng P; Yao H; Li Z; Huang K; Wu T; Ou X
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Aug; 69(8):2579-2584. PubMed ID: 35653448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Large-Range Spurious Mode Elimination for Wideband SAW Filters on LiNbO₃/SiO₂/Si Platform by LiNbO₃ Cut Angle Modulation.
    Xu H; Fu S; Shen J; Lu Z; Su R; Wang R; Song C; Zeng F; Wang W; Pan F
    IEEE Trans Ultrason Ferroelectr Freq Control; 2022 Nov; 69(11):3117-3125. PubMed ID: 35167449
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of acoustic waves of higher order propagating in plates of lithium niobate.
    Kuznetsova IE; Zaitsev BD; Borodina IA; Teplyh AA; Shurygin VV; Joshi SG
    Ultrasonics; 2004 Apr; 42(1-9):179-82. PubMed ID: 15047283
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.