These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
288 related articles for article (PubMed ID: 3109469)
1. Ribosome protection by tRNA derivatives against inactivation by virginiamycin M: evidence for two types of interaction of tRNA with the donor site of peptidyl transferase. Chinali G; Di Giambattista M; Cocito C Biochemistry; 1987 Mar; 26(6):1592-7. PubMed ID: 3109469 [TBL] [Abstract][Full Text] [Related]
2. Action of virginiamycin M on the stability of different ribosomal complexes to ultracentrifugation. Chinali G; Vanlinden F; Cocito C Biochim Biophys Acta; 1988 May; 950(1):67-74. PubMed ID: 3129013 [TBL] [Abstract][Full Text] [Related]
3. The action of virginiamycin M on the acceptor, donor, and catalytic sites of peptidyltransferase. Chinali G; Moureau P; Cocito CG J Biol Chem; 1984 Aug; 259(15):9563-8. PubMed ID: 6430902 [TBL] [Abstract][Full Text] [Related]
4. Action of erythromycin and virginiamycin S on polypeptide synthesis in cell-free systems. Chinali G; Nyssen E; Di Giambattista M; Cocito C Biochim Biophys Acta; 1988 Nov; 951(1):42-52. PubMed ID: 3142522 [TBL] [Abstract][Full Text] [Related]
5. Mechanism of translocation. Binding equilibria between the ribosome, mRNA analogues, and cognate tRNAs. Holschuh K; Gassen HG J Biol Chem; 1982 Feb; 257(4):1987-92. PubMed ID: 7035457 [TBL] [Abstract][Full Text] [Related]
6. Inhibition of polypeptide synthesis in cell-free systems by virginiamycin S and erythromycin. Evidence for a common mode of action of type B synergimycins and 14-membered macrolides. Chinali G; Nyssen E; Di Giambattista M; Cocito C Biochim Biophys Acta; 1988 Jan; 949(1):71-8. PubMed ID: 3120788 [TBL] [Abstract][Full Text] [Related]
7. The molecular basis of the inhibitory activities of type A and type B synergimycins and related antibiotics on ribosomes. Di Giambattista M; Chinali G; Cocito C J Antimicrob Chemother; 1989 Oct; 24(4):485-507. PubMed ID: 2515187 [TBL] [Abstract][Full Text] [Related]
8. Peptidyl transferase antibiotics perturb the relative positioning of the 3'-terminal adenosine of P/P'-site-bound tRNA and 23S rRNA in the ribosome. Kirillov SV; Porse BT; Garrett RA RNA; 1999 Aug; 5(8):1003-13. PubMed ID: 10445875 [TBL] [Abstract][Full Text] [Related]
9. Partial release of AcPhe-Phe-tRNA from ribosomes during poly(U)-dependent poly(Phe) synthesis and the effects of chloramphenicol. Rheinberger HJ; Nierhaus KH Eur J Biochem; 1990 Nov; 193(3):643-50. PubMed ID: 2249685 [TBL] [Abstract][Full Text] [Related]
10. Three tRNA binding sites on Escherichia coli ribosomes. Rheinberger HJ; Sternbach H; Nierhaus KH Proc Natl Acad Sci U S A; 1981 Sep; 78(9):5310-4. PubMed ID: 7029532 [TBL] [Abstract][Full Text] [Related]
11. Antibiotics and compounds affecting tanslation by eukaryotic ribosomes. Specific enhancement of aminoacyl-tRNA binding by methylaxnthines. Carrasco L; Fernandez-Puentes C; Vazquez D Mol Cell Biochem; 1976 Feb; 10(2):97-122. PubMed ID: 768741 [TBL] [Abstract][Full Text] [Related]
12. Codon-anticodon interaction at the ribosomal P (peptidyl-tRNA)site. Wurmbach P; Nierhaus KH Proc Natl Acad Sci U S A; 1979 May; 76(5):2143-7. PubMed ID: 221915 [TBL] [Abstract][Full Text] [Related]
13. The role of translocation in ribosomal accuracy. Translocation rates for cognate and noncognate aminoacyl- and peptidyl-tRNAs on Escherichia coli ribosomes. Gast FU; Peters F; Pingoud A J Biol Chem; 1987 Sep; 262(25):11920-6. PubMed ID: 3305498 [TBL] [Abstract][Full Text] [Related]
14. Fluorescence characterization of the interaction of various transfer RNA species with elongation factor Tu.GTP: evidence for a new functional role for elongation factor Tu in protein biosynthesis. Janiak F; Dell VA; Abrahamson JK; Watson BS; Miller DL; Johnson AE Biochemistry; 1990 May; 29(18):4268-77. PubMed ID: 2190631 [TBL] [Abstract][Full Text] [Related]
15. Mode of action of bottromycin A2. Release of aminoacyl- or peptidyl-tRNA from ribosomes. Otaka T; Kaji A J Biol Chem; 1976 Apr; 251(8):2299-306. PubMed ID: 770464 [TBL] [Abstract][Full Text] [Related]
16. Testing an alternative model for the ribosomal peptide elongation cycle. Rheinberger HJ; Nierhaus KH Proc Natl Acad Sci U S A; 1983 Jul; 80(14):4213-7. PubMed ID: 6348767 [TBL] [Abstract][Full Text] [Related]
17. The ribosome can discriminate the chirality of amino acids within its peptidyl-transferase center. Englander MT; Avins JL; Fleisher RC; Liu B; Effraim PR; Wang J; Schulten K; Leyh TS; Gonzalez RL; Cornish VW Proc Natl Acad Sci U S A; 2015 May; 112(19):6038-43. PubMed ID: 25918365 [TBL] [Abstract][Full Text] [Related]
18. GTP consumption of elongation factor Tu during translation of heteropolymeric mRNAs. Rodnina MV; Wintermeyer W Proc Natl Acad Sci U S A; 1995 Mar; 92(6):1945-9. PubMed ID: 7892205 [TBL] [Abstract][Full Text] [Related]
19. The interaction of elongation factor G with N-acetylphenylalanyl transfer RNA-ribosome complexes. Modolell J; Cabrer B; Váquez D Proc Natl Acad Sci U S A; 1973 Dec; 70(12):3561-5. PubMed ID: 4519646 [TBL] [Abstract][Full Text] [Related]
20. Properties of tRNA species modified in the 3'-terminal ribose moiety in an eukaryotic ribosomal system. Baksht E; de Groot N; Sprinzl M; Cramer F Biochemistry; 1976 Aug; 15(16):3639-46. PubMed ID: 782520 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]