These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
321 related articles for article (PubMed ID: 3109484)
1. The pH dependence of the hydrolysis of chromogenic substrates of the type, Lys-Pro-Xaa-Yaa-Phe-(NO2)Phe-Arg-Leu, by selected aspartic proteinases: evidence for specific interactions in subsites S3 and S2. Dunn BM; Valler MJ; Rolph CE; Foundling SI; Jimenez M; Kay J Biochim Biophys Acta; 1987 Jun; 913(2):122-30. PubMed ID: 3109484 [TBL] [Abstract][Full Text] [Related]
3. Engineering of porcine pepsin. Alteration of S1 substrate specificity of pepsin to those of fungal aspartic proteinases by site-directed mutagenesis. Shintani T; Nomura K; Ichishima E J Biol Chem; 1997 Jul; 272(30):18855-61. PubMed ID: 9228062 [TBL] [Abstract][Full Text] [Related]
4. [Determination of activity of aspartic proteinases by cleavage of new chromogenic substrates]. Litvinova OV; Balandina GN; Stepanov VM Bioorg Khim; 1998 Mar; 24(3):175-8. PubMed ID: 9612558 [TBL] [Abstract][Full Text] [Related]
5. Modification of the substrate specificity of porcine pepsin for the enzymatic production of bovine hide gelatin. Galea CA; Dalrymple BP; Kuypers R; Blakeley R Protein Sci; 2000 Oct; 9(10):1947-59. PubMed ID: 11106168 [TBL] [Abstract][Full Text] [Related]
6. A systematic series of synthetic chromophoric substrates for aspartic proteinases. Dunn BM; Jimenez M; Parten BF; Valler MJ; Rolph CE; Kay J Biochem J; 1986 Aug; 237(3):899-906. PubMed ID: 3541904 [TBL] [Abstract][Full Text] [Related]
7. Kinetic and modeling studies of S3-S3' subsites of HIV proteinases. Tözsér J; Weber IT; Gustchina A; Bláha I; Copeland TD; Louis JM; Oroszlan S Biochemistry; 1992 May; 31(20):4793-800. PubMed ID: 1591240 [TBL] [Abstract][Full Text] [Related]
8. Active-site specificity of digestive aspartic peptidases from the four species of Plasmodium that infect humans using chromogenic combinatorial peptide libraries. Beyer BB; Johnson JV; Chung AY; Li T; Madabushi A; Agbandje-McKenna M; McKenna R; Dame JB; Dunn BM Biochemistry; 2005 Feb; 44(6):1768-79. PubMed ID: 15697202 [TBL] [Abstract][Full Text] [Related]
9. Differences in the P1' substrate specificities of pepsin A and chymosin. Kageyama H; Ueda H; Tezuka T; Ogasawara A; Narita Y; Kageyama T; Ichinose M J Biochem; 2010 Feb; 147(2):167-74. PubMed ID: 19819898 [TBL] [Abstract][Full Text] [Related]
10. Secondary substrate binding in aspartic proteinases: contributions of subsites S3 and S'2 to kcat. Balbaa M; Cunningham A; Hofmann T Arch Biochem Biophys; 1993 Nov; 306(2):297-303. PubMed ID: 8215428 [TBL] [Abstract][Full Text] [Related]
11. Substrate specificities and kinetic properties of proteinase A from the yeast Saccharomyces cerevisiae and the development of a novel substrate. Kondo H; Shibano Y; Amachi T; Cronin N; Oda K; Dunn BM J Biochem; 1998 Jul; 124(1):141-7. PubMed ID: 9644256 [TBL] [Abstract][Full Text] [Related]
12. Exploration of subsite binding specificity of human cathepsin D through kinetics and rule-based molecular modeling. Scarborough PE; Guruprasad K; Topham C; Richo GR; Conner GE; Blundell TL; Dunn BM Protein Sci; 1993 Feb; 2(2):264-76. PubMed ID: 8443603 [TBL] [Abstract][Full Text] [Related]
13. Secondary enzyme-substrate interactions: kinetic evidence for ionic interactions between substrate side chains and the pepsin active site. Pohl J; Dunn BM Biochemistry; 1988 Jun; 27(13):4827-34. PubMed ID: 3139029 [TBL] [Abstract][Full Text] [Related]
14. Engineering the substrate specificity of rhizopuspepsin: the role of Asp 77 of fungal aspartic proteinases in facilitating the cleavage of oligopeptide substrates with lysine in P1. Lowther WT; Majer P; Dunn BM Protein Sci; 1995 Apr; 4(4):689-702. PubMed ID: 7613467 [TBL] [Abstract][Full Text] [Related]
15. Effect of secondary substrate binding in penicillopepsin: contributions of subsites S3 and S2' to kcat. Hofmann T; Allen B; Bendiner M; Blum M; Cunningham A Biochemistry; 1988 Feb; 27(4):1140-6. PubMed ID: 3284578 [TBL] [Abstract][Full Text] [Related]
16. Exploring the binding preferences/specificity in the active site of human cathepsin E. Rao-Naik C; Guruprasad K; Batley B; Rapundalo S; Hill J; Blundell T; Kay J; Dunn BM Proteins; 1995 Jun; 22(2):168-81. PubMed ID: 7567964 [TBL] [Abstract][Full Text] [Related]
17. Synthetic peptides for chymosin and pepsin assays: pH effect and pepsin independent-determination in mixtures. Salesse R; Garnier J J Dairy Sci; 1976 Jul; 59(7):1215-21. PubMed ID: 7580 [TBL] [Abstract][Full Text] [Related]
18. Sub-site preferences of the aspartic proteinase from the human immunodeficiency virus, HIV-1. Konvalinka J; Strop P; Velek J; Cerna V; Kostka V; Phylip LH; Richards AD; Dunn BM; Kay J FEBS Lett; 1990 Jul; 268(1):35-8. PubMed ID: 2200711 [TBL] [Abstract][Full Text] [Related]
19. Recombinant expression and enzymatic subsite characterization of plasmepsin 4 from the four Plasmodium species infecting man. Li T; Yowell CA; Beyer BB; Hung SH; Westling J; Lam MT; Dunn BM; Dame JB Mol Biochem Parasitol; 2004 May; 135(1):101-9. PubMed ID: 15287591 [TBL] [Abstract][Full Text] [Related]
20. Substrate specificities of pepstatin-insensitive carboxyl proteinases from gram-negative bacteria. Ito M; Dunn BM; Oda K J Biochem; 1996 Oct; 120(4):845-50. PubMed ID: 8947851 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]