BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 3109490)

  • 1. A study on the in vitro interaction between tyrosinase and glutathione S-transferase.
    Miranda M; di Ilio C; Bonfigli A; Arcadi A; Pitari G; Dupre S; Federici G; del Boccio G
    Biochim Biophys Acta; 1987 Jul; 913(3):386-94. PubMed ID: 3109490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Glutathione transferase M2-2 catalyzes conjugation of dopamine and dopa o-quinones.
    Dagnino-Subiabre A; Cassels BK; Baez S; Johansson AS; Mannervik B; Segura-Aguilar J
    Biochem Biophys Res Commun; 2000 Jul; 274(1):32-6. PubMed ID: 10903891
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An electrometric method for the determination of tyrosinase activity.
    Solano-Muñoz F; Peñafiel R; Galindo JD
    Biochem J; 1985 Aug; 229(3):573-8. PubMed ID: 2996485
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tyrosinase-catalyzed oxidation of dopa and related catechol(amine)s: a kinetic electron spin resonance investigation using spin-stabilization and spin label oximetry.
    Korytowski W; Sarna T; Kalyanaraman B; Sealy RC
    Biochim Biophys Acta; 1987 Jun; 924(3):383-92. PubMed ID: 3036239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synergism exerted by 4-methyl catechol, catechol, and their respective quinones on the rate of DL-DOPA oxidation by mushroom tyrosinase.
    Schved F; Kahn V
    Pigment Cell Res; 1992 Feb; 5(1):41-8. PubMed ID: 1631021
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identification of o-quinone/quinone methide metabolites of quercetin in a cellular in vitro system.
    Awad HM; Boersma MG; Boeren S; van der Woude H; van Zanden J; van Bladeren PJ; Vervoort J; Rietjens IM
    FEBS Lett; 2002 Jun; 520(1-3):30-4. PubMed ID: 12044865
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dopachrome oxidoreductase: a new enzyme in the pigment pathway.
    Barber JI; Townsend D; Olds DP; King RA
    J Invest Dermatol; 1984 Aug; 83(2):145-9. PubMed ID: 6432918
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tyrosinase-catalyzed binding of 3,4-dihydroxyphenylalanine with proteins through the sulfhydryl group.
    Kato T; Ito S; Fujita K
    Biochim Biophys Acta; 1986 May; 881(3):415-21. PubMed ID: 2938636
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dopachrome conversion and dopa oxidase activities in recessive yellow mice. Catalytic activities of extracts from pheomelanic and eumelanic tissues.
    Lamoreux ML
    J Hered; 1986; 77(5):337-40. PubMed ID: 3095419
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of dopa-loading on glutathione metabolising enzymes and tyrosinase in relation to 5-S-cysteinyl-dopa genesis in cultured B-16 melanoma cells.
    Chakraborty AK; Ichihashi M; Mishima Y
    J Dermatol Sci; 1991 Sep; 2(5):329-35. PubMed ID: 1683790
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of pH in the melanin biosynthesis pathway.
    Cánovas FG; García-Carmona F; Sánchez JV; Pastor JL; Teruel JA
    J Biol Chem; 1982 Aug; 257(15):8738-44. PubMed ID: 6807981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regioselectivity and reversibility of the glutathione conjugation of quercetin quinone methide.
    Boersma MG; Vervoort J; Szymusiak H; Lemanska K; Tyrakowska B; Cenas N; Segura-Aguilar J; Rietjens IM
    Chem Res Toxicol; 2000 Mar; 13(3):185-91. PubMed ID: 10725115
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Laccase--and not tyrosinase--is the enzyme responsible for quinone methide production from 2,6-dimethoxy-4-allyl phenol.
    Sugumaran M; Bolton JL
    Arch Biochem Biophys; 1998 May; 353(2):207-12. PubMed ID: 9606954
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Oxidation of tyrosine residues in proteins by tyrosinase. Formation of protein-bonded 3,4-dihydroxyphenylalanine and 5-S-cysteinyl-3,4-dihydroxyphenylalanine.
    Ito S; Kato T; Shinpo K; Fujita K
    Biochem J; 1984 Sep; 222(2):407-11. PubMed ID: 6433900
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Liposome-entrapped tyrosinase: a tool to investigate the regulation of the Raper-Mason pathway.
    Miranda M; Amicarelli F; Poma A; Ragnelli AM; Arcadi A
    Biochim Biophys Acta; 1988 Sep; 966(3):276-86. PubMed ID: 3137975
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of L-ascorbic acid on the monophenolase activity of tyrosinase.
    Ros JR; Rodríguez-López JN; García-Cánovas F
    Biochem J; 1993 Oct; 295 ( Pt 1)(Pt 1):309-12. PubMed ID: 8216233
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The role of sulfhydryl compounds in mammalian melanogenesis: the effect of cysteine and glutathione upon tyrosinase and the intermediates of the pathway.
    Jara JR; Aroca P; Solano F; Martinez JH; Lozano JA
    Biochim Biophys Acta; 1988 Nov; 967(2):296-303. PubMed ID: 2903772
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioactivation of estrone and its catechol metabolites to quinoid-glutathione conjugates in rat liver microsomes.
    Iverson SL; Shen L; Anlar N; Bolton JL
    Chem Res Toxicol; 1996 Mar; 9(2):492-9. PubMed ID: 8839054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Production of 6-hydroxydopa by human tyrosinase.
    Hansson C; Rorsman H; Rosengren E; Wittbjer A
    Acta Derm Venereol; 1985; 65(2):154-7. PubMed ID: 2408419
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tyrosinase-catalyzed metabolism of rhododendrol (RD) in B16 melanoma cells: production of RD-pheomelanin and covalent binding with thiol proteins.
    Ito S; Okura M; Nakanishi Y; Ojika M; Wakamatsu K; Yamashita T
    Pigment Cell Melanoma Res; 2015 May; 28(3):295-306. PubMed ID: 25713930
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.