These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 31095387)

  • 1. Network-Based Classification and Modeling of Amyloid Fibrils.
    Grazioli G; Yu Y; Unhelkar MH; Martin RW; Butts CT
    J Phys Chem B; 2019 Jul; 123(26):5452-5462. PubMed ID: 31095387
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Network Hamiltonian models reveal pathways to amyloid fibril formation.
    Yu Y; Grazioli G; Unhelkar MH; Martin RW; Butts CT
    Sci Rep; 2020 Sep; 10(1):15668. PubMed ID: 32973286
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure and intermolecular dynamics of aggregates populated during amyloid fibril formation studied by hydrogen/deuterium exchange.
    Carulla N; Zhou M; Giralt E; Robinson CV; Dobson CM
    Acc Chem Res; 2010 Aug; 43(8):1072-9. PubMed ID: 20557067
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational studies of protein aggregation: methods and applications.
    Morriss-Andrews A; Shea JE
    Annu Rev Phys Chem; 2015 Apr; 66():643-66. PubMed ID: 25648485
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Understanding amyloid fibril nucleation and aβ oligomer/drug interactions from computer simulations.
    Nguyen P; Derreumaux P
    Acc Chem Res; 2014 Feb; 47(2):603-11. PubMed ID: 24368046
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-folding and aggregation of amyloid nanofibrils.
    Paparcone R; Cranford SW; Buehler MJ
    Nanoscale; 2011 Apr; 3(4):1748-55. PubMed ID: 21347488
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Probing the pressure-temperature stability of amyloid fibrils provides new insights into their molecular properties.
    Meersman F; Dobson CM
    Biochim Biophys Acta; 2006 Mar; 1764(3):452-60. PubMed ID: 16337233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genetic Algorithm for Automated Parameterization of Network Hamiltonian Models of Amyloid Fibril Formation.
    Grazioli G; Tao A; Bhatia I; Regan P
    J Phys Chem B; 2024 Feb; 128(8):1854-1865. PubMed ID: 38359362
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Diversity of kinetic pathways in amyloid fibril formation.
    Bellesia G; Shea JE
    J Chem Phys; 2009 Sep; 131(11):111102. PubMed ID: 19778093
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A brief overview of amyloids and Alzheimer's disease.
    Ow SY; Dunstan DE
    Protein Sci; 2014 Oct; 23(10):1315-31. PubMed ID: 25042050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Lipid membranes catalyse the fibril formation of the amyloid-β (1-42) peptide through lipid-fibril interactions that reinforce secondary pathways.
    Lindberg DJ; Wesén E; Björkeroth J; Rocha S; Esbjörner EK
    Biochim Biophys Acta Biomembr; 2017 Oct; 1859(10):1921-1929. PubMed ID: 28564579
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Early mechanisms of amyloid fibril nucleation in model and disease-related proteins.
    Morel B; Conejero-Lara F
    Biochim Biophys Acta Proteins Proteom; 2019 Nov; 1867(11):140264. PubMed ID: 31437584
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exposure of Aggregation-Prone Segments is the Requirement for Amyloid Fibril Formation.
    Pramanik S; Ahmad B
    Curr Protein Pept Sci; 2018; 19(10):1024-1035. PubMed ID: 29779477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interpreting the aggregation kinetics of amyloid peptides.
    Pellarin R; Caflisch A
    J Mol Biol; 2006 Jul; 360(4):882-92. PubMed ID: 16797587
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energetics Underlying Twist Polymorphisms in Amyloid Fibrils.
    Periole X; Huber T; Bonito-Oliva A; Aberg KC; van der Wel PCA; Sakmar TP; Marrink SJ
    J Phys Chem B; 2018 Jan; 122(3):1081-1091. PubMed ID: 29254334
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dissociation of amyloid fibrils of alpha-synuclein and transthyretin by pressure reveals their reversible nature and the formation of water-excluded cavities.
    Foguel D; Suarez MC; Ferrão-Gonzales AD; Porto TC; Palmieri L; Einsiedler CM; Andrade LR; Lashuel HA; Lansbury PT; Kelly JW; Silva JL
    Proc Natl Acad Sci U S A; 2003 Aug; 100(17):9831-6. PubMed ID: 12900507
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Amyloid Fibril Design: Limiting Structural Polymorphism in Alzheimer's Aβ Protofilaments.
    Tywoniuk B; Yuan Y; McCartan S; Szydłowska BM; Tofoleanu F; Brooks BR; Buchete NV
    J Phys Chem B; 2018 Dec; 122(49):11535-11545. PubMed ID: 30335383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elucidating the Structures of Amyloid Oligomers with Macrocyclic β-Hairpin Peptides: Insights into Alzheimer's Disease and Other Amyloid Diseases.
    Kreutzer AG; Nowick JS
    Acc Chem Res; 2018 Mar; 51(3):706-718. PubMed ID: 29508987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structure of amyloid oligomers and their mechanisms of toxicities: Targeting amyloid oligomers using novel therapeutic approaches.
    Salahuddin P; Fatima MT; Abdelhameed AS; Nusrat S; Khan RH
    Eur J Med Chem; 2016 May; 114():41-58. PubMed ID: 26974374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. How do membranes initiate Alzheimer's Disease? Formation of toxic amyloid fibrils by the amyloid β-protein on ganglioside clusters.
    Matsuzaki K
    Acc Chem Res; 2014 Aug; 47(8):2397-404. PubMed ID: 25029558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.