BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 31095388)

  • 1. Assessing Possible Mechanisms of Micrometer-Scale Electron Transfer in Heme-Free Geobacter sulfurreducens Pili.
    Ru X; Zhang P; Beratan DN
    J Phys Chem B; 2019 Jun; 123(24):5035-5047. PubMed ID: 31095388
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Expressing the Geobacter metallireducens PilA in Geobacter sulfurreducens Yields Pili with Exceptional Conductivity.
    Tan Y; Adhikari RY; Malvankar NS; Ward JE; Woodard TL; Nevin KP; Lovley DR
    mBio; 2017 Jan; 8(1):. PubMed ID: 28096491
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Direct Observation of Electrically Conductive Pili Emanating from
    Liu X; Walker DJF; Nonnenmann SS; Sun D; Lovley DR
    mBio; 2021 Aug; 12(4):e0220921. PubMed ID: 34465020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Significance of a Posttranslational Modification of the PilA Protein of Geobacter sulfurreducens for Surface Attachment, Biofilm Formation, and Growth on Insoluble Extracellular Electron Acceptors.
    Richter LV; Franks AE; Weis RM; Sandler SJ
    J Bacteriol; 2017 Apr; 199(8):. PubMed ID: 28138101
    [No Abstract]   [Full Text] [Related]  

  • 5. Generation of High Current Densities in Geobacter sulfurreducens Lacking the Putative Gene for the PilB Pilus Assembly Motor.
    Ueki T; Walker DJF; Nevin KP; Ward JE; Woodard TL; Nonnenmann SS; Lovley DR
    Microbiol Spectr; 2021 Oct; 9(2):e0087721. PubMed ID: 34585977
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structural Basis for the High Conductivity of Microbial Pili as Potential Nanowires.
    Shu C; Xiao K; Sun X
    J Nanosci Nanotechnol; 2020 Jan; 20(1):64-80. PubMed ID: 31383140
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct Extracellular Electron Transfer of the
    Shu C; Zhu Q; Xiao K; Hou Y; Ma H; Ma J; Sun X
    Biomed Res Int; 2019; 2019():6151587. PubMed ID: 31886232
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aromatic amino acids required for pili conductivity and long-range extracellular electron transport in Geobacter sulfurreducens.
    Vargas M; Malvankar NS; Tremblay PL; Leang C; Smith JA; Patel P; Snoeyenbos-West O; Nevin KP; Lovley DR
    mBio; 2013 Mar; 4(2):e00105-13. PubMed ID: 23481602
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structural basis for metallic-like conductivity in microbial nanowires.
    Malvankar NS; Vargas M; Nevin K; Tremblay PL; Evans-Lutterodt K; Nykypanchuk D; Martz E; Tuominen MT; Lovley DR
    mBio; 2015 Mar; 6(2):e00084. PubMed ID: 25736881
    [TBL] [Abstract][Full Text] [Related]  

  • 10.
    Ueki T; Nevin KP; Rotaru AE; Wang LY; Ward JE; Woodard TL; Lovley DR
    mBio; 2018 Jul; 9(4):. PubMed ID: 29991583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structure of the type IVa major pilin from the electrically conductive bacterial nanowires of Geobacter sulfurreducens.
    Reardon PN; Mueller KT
    J Biol Chem; 2013 Oct; 288(41):29260-6. PubMed ID: 23965997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Geobacter sulfurreducens pili support ohmic electronic conduction in aqueous solution.
    Ing NL; Nusca TD; Hochbaum AI
    Phys Chem Chem Phys; 2017 Aug; 19(32):21791-21799. PubMed ID: 28783184
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Thermally activated charge transport in microbial protein nanowires.
    Lampa-Pastirk S; Veazey JP; Walsh KA; Feliciano GT; Steidl RJ; Tessmer SH; Reguera G
    Sci Rep; 2016 Mar; 6():23517. PubMed ID: 27009596
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The Low Conductivity of Geobacter uraniireducens Pili Suggests a Diversity of Extracellular Electron Transfer Mechanisms in the Genus Geobacter.
    Tan Y; Adhikari RY; Malvankar NS; Ward JE; Nevin KP; Woodard TL; Smith JA; Snoeyenbos-West OL; Franks AE; Tuominen MT; Lovley DR
    Front Microbiol; 2016; 7():980. PubMed ID: 27446021
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coherence-assisted electron diffusion across the multi-heme protein-based bacterial nanowire.
    Eshel Y; Peskin U; Amdursky N
    Nanotechnology; 2020 Jul; 31(31):314002. PubMed ID: 32259806
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Long-range electron transport to Fe(III) oxide via pili with metallic-like conductivity.
    Lovley DR
    Biochem Soc Trans; 2012 Dec; 40(6):1186-90. PubMed ID: 23176452
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Microbial nanowires for bioenergy applications.
    Malvankar NS; Lovley DR
    Curr Opin Biotechnol; 2014 Jun; 27():88-95. PubMed ID: 24863901
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparative transcriptomic insights into the mechanisms of electron transfer in Geobacter co-cultures with activated carbon and magnetite.
    Zheng S; Liu F; Li M; Xiao L; Wang O
    Sci China Life Sci; 2018 Jul; 61(7):787-798. PubMed ID: 29101585
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dissecting the Structural and Conductive Functions of Nanowires in
    Ye Y; Liu X; Nealson KH; Rensing C; Qin S; Zhou S
    mBio; 2021 Feb; 13(1):e0382221. PubMed ID: 35164556
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure of Microbial Nanowires Reveals Stacked Hemes that Transport Electrons over Micrometers.
    Wang F; Gu Y; O'Brien JP; Yi SM; Yalcin SE; Srikanth V; Shen C; Vu D; Ing NL; Hochbaum AI; Egelman EH; Malvankar NS
    Cell; 2019 Apr; 177(2):361-369.e10. PubMed ID: 30951668
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.