These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 31095490)

  • 1. Predicting Essential Proteins by Integrating Network Topology, Subcellular Localization Information, Gene Expression Profile and GO Annotation Data.
    Zhang W; Xu J; Zou X
    IEEE/ACM Trans Comput Biol Bioinform; 2020; 17(6):2053-2061. PubMed ID: 31095490
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CEGSO: Boosting Essential Proteins Prediction by Integrating Protein Complex, Gene Expression, Gene Ontology, Subcellular Localization and Orthology Information.
    Zhang W; Xue X; Xie C; Li Y; Liu J; Chen H; Li G
    Interdiscip Sci; 2021 Sep; 13(3):349-361. PubMed ID: 33772722
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Detecting Essential Proteins Based on Network Topology, Gene Expression Data, and Gene Ontology Information.
    Zhang W; Xu J; Li Y; Zou X
    IEEE/ACM Trans Comput Biol Bioinform; 2018; 15(1):109-116. PubMed ID: 28650821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A New Method for Identifying Essential Proteins by Measuring Co-Expression and Functional Similarity.
    Zhang W; Xu J; Li X; Zou X
    IEEE Trans Nanobioscience; 2016 Dec; 15(8):939-945. PubMed ID: 27834650
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Predicting essential proteins based on subcellular localization, orthology and PPI networks.
    Li G; Li M; Wang J; Wu J; Wu FX; Pan Y
    BMC Bioinformatics; 2016 Aug; 17 Suppl 8(Suppl 8):279. PubMed ID: 27586883
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Identifying essential proteins based on sub-network partition and prioritization by integrating subcellular localization information.
    Li M; Li W; Wu FX; Pan Y; Wang J
    J Theor Biol; 2018 Jun; 447():65-73. PubMed ID: 29571709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Integrating network topology, gene expression data and GO annotation information for protein complex prediction.
    Zhang W; Xu J; Li Y; Zou X
    J Bioinform Comput Biol; 2019 Feb; 17(1):1950001. PubMed ID: 30803297
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A novel essential protein identification method based on PPI networks and gene expression data.
    Zhong J; Tang C; Peng W; Xie M; Sun Y; Tang Q; Xiao Q; Yang J
    BMC Bioinformatics; 2021 May; 22(1):248. PubMed ID: 33985429
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A new method for the discovery of essential proteins.
    Zhang X; Xu J; Xiao WX
    PLoS One; 2013; 8(3):e58763. PubMed ID: 23555595
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Topology Potential-Based Method for Identifying Essential Proteins from PPI Networks.
    Li M; Lu Y; Wang J; Wu FX; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2015; 12(2):372-83. PubMed ID: 26357224
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identification of Essential Proteins Based on a New Combination of Local Interaction Density and Protein Complexes.
    Luo J; Qi Y
    PLoS One; 2015; 10(6):e0131418. PubMed ID: 26125187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of essential proteins based on edge features and the fusion of multiple-source biological information.
    Liu P; Liu C; Mao Y; Guo J; Liu F; Cai W; Zhao F
    BMC Bioinformatics; 2023 May; 24(1):203. PubMed ID: 37198530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Deep Learning Framework for Identifying Essential Proteins by Integrating Multiple Types of Biological Information.
    Zeng M; Li M; Fei Z; Wu FX; Li Y; Pan Y; Wang J
    IEEE/ACM Trans Comput Biol Bioinform; 2021; 18(1):296-305. PubMed ID: 30736002
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of Refined Protein Interaction Network for Predicting Essential Proteins.
    Li M; Ni P; Chen X; Wang J; Wu FX; Pan Y
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(4):1386-1397. PubMed ID: 28186903
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An iteration method for identifying yeast essential proteins from heterogeneous network.
    Zhao B; Zhao Y; Zhang X; Zhang Z; Zhang F; Wang L
    BMC Bioinformatics; 2019 Jun; 20(1):355. PubMed ID: 31234779
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved flower pollination algorithm for identifying essential proteins.
    Lei X; Fang M; Wu FX; Chen L
    BMC Syst Biol; 2018 Apr; 12(Suppl 4):46. PubMed ID: 29745838
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Identification of protein complexes from multi-relationship protein interaction networks.
    Li X; Wang J; Zhao B; Wu FX; Pan Y
    Hum Genomics; 2016 Jul; 10 Suppl 2(Suppl 2):17. PubMed ID: 27461193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An iteration model for identifying essential proteins by combining comprehensive PPI network with biological information.
    Li S; Zhang Z; Li X; Tan Y; Wang L; Chen Z
    BMC Bioinformatics; 2021 Sep; 22(1):430. PubMed ID: 34496745
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting essential proteins by integrating orthology, gene expressions, and PPI networks.
    Zhang X; Xiao W; Hu X
    PLoS One; 2018; 13(4):e0195410. PubMed ID: 29634727
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Essential Protein Detection by Random Walk on Weighted Protein-Protein Interaction Networks.
    Xu B; Guan J; Wang Y; Wang Z
    IEEE/ACM Trans Comput Biol Bioinform; 2019; 16(2):377-387. PubMed ID: 28504946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.