These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 31095509)
1. A Law of Large Numbers in the Supremum Norm for a Multiscale Stochastic Spatial Gene Network. Debussche A; Nguepedja Nankep MJ Int J Biostat; 2019 May; 15(2):. PubMed ID: 31095509 [TBL] [Abstract][Full Text] [Related]
2. Sensitivity Analysis for Multiscale Stochastic Reaction Networks Using Hybrid Approximations. Gupta A; Khammash M Bull Math Biol; 2019 Aug; 81(8):3121-3158. PubMed ID: 30302636 [TBL] [Abstract][Full Text] [Related]
3. Stochastic hybrid models of gene regulatory networks - A PDE approach. Kurasov P; Lück A; Mugnolo D; Wolf V Math Biosci; 2018 Nov; 305():170-177. PubMed ID: 30244015 [TBL] [Abstract][Full Text] [Related]
4. Multiscale Stochastic Reaction-Diffusion Algorithms Combining Markov Chain Models with Stochastic Partial Differential Equations. Kang HW; Erban R Bull Math Biol; 2019 Aug; 81(8):3185-3213. PubMed ID: 31165406 [TBL] [Abstract][Full Text] [Related]
5. Transient dynamics of reduced-order models of genetic regulatory networks. Pal R; Bhattacharya S IEEE/ACM Trans Comput Biol Bioinform; 2012; 9(4):1230-44. PubMed ID: 22411891 [TBL] [Abstract][Full Text] [Related]
6. Stochastic modeling and numerical simulation of gene regulatory networks with protein bursting. Pájaro M; Alonso AA; Otero-Muras I; Vázquez C J Theor Biol; 2017 May; 421():51-70. PubMed ID: 28341132 [TBL] [Abstract][Full Text] [Related]
7. Limit theorems for generalized density-dependent Markov chains and bursty stochastic gene regulatory networks. Chen X; Jia C J Math Biol; 2020 Mar; 80(4):959-994. PubMed ID: 31754779 [TBL] [Abstract][Full Text] [Related]
8. Passive synchronization for Markov jump genetic oscillator networks with time-varying delays. Lu L; He B; Man C; Wang S Math Biosci; 2015 Apr; 262():80-7. PubMed ID: 25656385 [TBL] [Abstract][Full Text] [Related]
9. Time-dependent propagators for stochastic models of gene expression: an analytical method. Veerman F; Marr C; Popović N J Math Biol; 2018 Aug; 77(2):261-312. PubMed ID: 29247320 [TBL] [Abstract][Full Text] [Related]
10. A stochastic version of the Eigen model. Musso F Bull Math Biol; 2011 Jan; 73(1):151-80. PubMed ID: 20232170 [TBL] [Abstract][Full Text] [Related]
11. Overview of Gene Regulatory Network Inference Based on Differential Equation Models. Yang B; Chen Y Curr Protein Pept Sci; 2020; 21(11):1054-1059. PubMed ID: 32053072 [TBL] [Abstract][Full Text] [Related]
12. Robust H(∞) observer-based controller for stochastic genetic regulatory networks. Shokouhi-Nejad H; Rikhtehgar-Ghiasi A Math Biosci; 2014 Apr; 250():41-53. PubMed ID: 24530345 [TBL] [Abstract][Full Text] [Related]
13. A multiscale compartment-based model of stochastic gene regulatory networks using hitting-time analysis. Coulier A; Hellander S; Hellander A J Chem Phys; 2021 May; 154(18):184105. PubMed ID: 34241042 [TBL] [Abstract][Full Text] [Related]
14. Sequential estimation for prescribed statistical accuracy in stochastic simulation of biological systems. Sandmann W Math Biosci; 2009 Sep; 221(1):43-53. PubMed ID: 19576907 [TBL] [Abstract][Full Text] [Related]
16. Markov State Models of gene regulatory networks. Chu BK; Tse MJ; Sato RR; Read EL BMC Syst Biol; 2017 Feb; 11(1):14. PubMed ID: 28166778 [TBL] [Abstract][Full Text] [Related]
17. Computational Modelling of Cancer Development and Growth: Modelling at Multiple Scales and Multiscale Modelling. Szymańska Z; Cytowski M; Mitchell E; Macnamara CK; Chaplain MAJ Bull Math Biol; 2018 May; 80(5):1366-1403. PubMed ID: 28634857 [TBL] [Abstract][Full Text] [Related]
18. Waves in a Stochastic Cell Motility Model. Hamster C; van Heijster P Bull Math Biol; 2023 Jun; 85(8):70. PubMed ID: 37329390 [TBL] [Abstract][Full Text] [Related]
19. Accurate hybrid stochastic simulation of a system of coupled chemical or biochemical reactions. Salis H; Kaznessis Y J Chem Phys; 2005 Feb; 122(5):54103. PubMed ID: 15740306 [TBL] [Abstract][Full Text] [Related]
20. Quasi-Steady-State Approximations Derived from the Stochastic Model of Enzyme Kinetics. Kang HW; KhudaBukhsh WR; Koeppl H; Rempała GA Bull Math Biol; 2019 May; 81(5):1303-1336. PubMed ID: 30756234 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]