BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 31095573)

  • 1. Arbuscular mycorrhizal fungi reduce arsenic uptake and improve plant growth in Lens culinaris.
    Alam MZ; Hoque MA; Ahammed GJ; Carpenter-Boggs L
    PLoS One; 2019; 14(5):e0211441. PubMed ID: 31095573
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Arsenic accumulation in lentil (Lens culinaris) genotypes and risk associated with the consumption of grains.
    Alam MZ; Hoque MA; Ahammed GJ; McGee R; Carpenter-Boggs L
    Sci Rep; 2019 Jul; 9(1):9431. PubMed ID: 31263187
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The arbuscular mycorrhizal fungus Glomus mosseae gives contradictory effects on phosphorus and arsenic acquisition by Medicago sativa Linn.
    Chen B; Xiao X; Zhu YG; Smith FA; Xie ZM; Smith SE
    Sci Total Environ; 2007 Jul; 379(2-3):226-34. PubMed ID: 17157359
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of mycorrhiza on uranium and phosphorus uptake by barley plants from a field-contaminated soil.
    Chen B; Zhu YG; Zhang X; Jakobsen I
    Environ Sci Pollut Res Int; 2005 Nov; 12(6):325-31. PubMed ID: 16305138
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Phytoprotective effect of arbuscular mycorrhizal fungi species against arsenic toxicity in tropical leguminous species.
    de Melo RW; Schneider J; de Souza CE; Sousa SC; Guimarães GL; de Souza MF
    Int J Phytoremediation; 2014; 16(7-12):840-58. PubMed ID: 24933888
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of mycorrhizal fungi and phosphorus in the arsenic tolerance of basin wildrye.
    Knudson JA; Meikle T; DeLuca TH
    J Environ Qual; 2003; 32(6):2001-6. PubMed ID: 14674521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of arsenic contaminated irrigation water on Lens culinaris L. and toxicity assessment using lux marked biosensor.
    Ahmed FR; Alexander IJ; Mwinyihija M; Killham K
    J Environ Sci (China); 2012; 24(6):1106-16. PubMed ID: 23505879
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of arbuscular mycorrhizal inoculation on plants growing on arsenic contaminated soil.
    Jankong P; Visoottiviseth P
    Chemosphere; 2008 Jul; 72(7):1092-7. PubMed ID: 18499218
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of arbuscular mycorrhizal fungi on young vines in copper-contaminated soil.
    Ambrosini VG; Voges JG; Canton L; Couto Rda R; Ferreira PA; Comin JJ; de Melo GW; Brunetto G; Soares CR
    Braz J Microbiol; 2015; 46(4):1045-52. PubMed ID: 26691462
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Arbuscular mycorrhizal fungi colonization and phosphorus nutrition in organic field pea and lentil.
    Baird JM; Walley FL; Shirtliffe SJ
    Mycorrhiza; 2010 Nov; 20(8):541-9. PubMed ID: 20179973
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of different arbuscular mycorrhizal fungal isolates on growth and arsenic accumulation in Plantago lanceolata L.
    Orłowska E; Godzik B; Turnau K
    Environ Pollut; 2012 Sep; 168():121-30. PubMed ID: 22609863
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The combined use of arbuscular mycorrhizal fungi, biochar and nitrogen fertilizer is most beneficial to cultivate Cichorium intybus L. in Cd-contaminated soil.
    Zhao Z; Chen L; Xiao Y
    Ecotoxicol Environ Saf; 2021 Jul; 217():112154. PubMed ID: 33901784
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integration of earthworms and arbuscular mycorrhizal fungi into phytoremediation of cadmium-contaminated soil by Solanum nigrum L.
    Wang G; Wang L; Ma F; You Y; Wang Y; Yang D
    J Hazard Mater; 2020 May; 389():121873. PubMed ID: 31862351
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Arbuscular mycorrhizal symbiosis influences arsenic accumulation and speciation in Medicago truncatula L. in arsenic-contaminated soil.
    Zhang X; Ren BH; Wu SL; Sun YQ; Lin G; Chen BD
    Chemosphere; 2015 Jan; 119():224-230. PubMed ID: 25016555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anatomy and ultrastructure alterations of Leucaena leucocephala (Lam.) inoculated with mycorrhizal fungi in response to arsenic-contaminated soil.
    Schneider J; Labory CR; Rangel WM; Alves E; Guilherme LR
    J Hazard Mater; 2013 Nov; 262():1245-58. PubMed ID: 22704769
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Arsenic uptake by arbuscular mycorrhizal maize (Zea mays L.) grown in an arsenic-contaminated soil with added phosphorus.
    Xia YS; Chen BD; Christie P; Smith FA; Wang YS; Li XL
    J Environ Sci (China); 2007; 19(10):1245-51. PubMed ID: 18062425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arbuscular mycorrhizal fungi alter microbiome structure of rhizosphere soil to enhance maize tolerance to La.
    Hao L; Zhang Z; Hao B; Diao F; Zhang J; Bao Z; Guo W
    Ecotoxicol Environ Saf; 2021 Apr; 212():111996. PubMed ID: 33545409
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of mycorrhizal influence on the development and phytoremediation potential of Canavalia gladiata in Pb-contaminated soils.
    Souza LA; Andrade SA; Souza SC; Schiavinato MA
    Int J Phytoremediation; 2013; 15(5):465-76. PubMed ID: 23488172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phosphorus efficiencies and responses of barley (Hordeum vulgare L.) to arbuscular mycorrhizal fungi grown in highly calcareous soil.
    Zhu YG; Smith FA; Smith SE
    Mycorrhiza; 2003 Apr; 13(2):93-100. PubMed ID: 12682831
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanistic understanding of interspecific interaction between a C4 grass and a C3 legume via arbuscular mycorrhizal fungi, as influenced by soil phosphorus availability using a
    Liu H; Wu Y; Xu H; Ai Z; Zhang J; Liu G; Xue S
    Plant J; 2021 Oct; 108(1):183-196. PubMed ID: 34293218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.