These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 31095783)

  • 1. Electron Transfer in Nanoscale Contact Electrification: Photon Excitation Effect.
    Lin S; Xu L; Zhu L; Chen X; Wang ZL
    Adv Mater; 2019 Jul; 31(27):e1901418. PubMed ID: 31095783
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electron Transfer in Nanoscale Contact Electrification: Effect of Temperature in the Metal-Dielectric Case.
    Lin S; Xu L; Xu C; Chen X; Wang AC; Zhang B; Lin P; Yang Y; Zhao H; Wang ZL
    Adv Mater; 2019 Apr; 31(17):e1808197. PubMed ID: 30844100
    [TBL] [Abstract][Full Text] [Related]  

  • 3. On the Electron-Transfer Mechanism in the Contact-Electrification Effect.
    Xu C; Zi Y; Wang AC; Zou H; Dai Y; He X; Wang P; Wang YC; Feng P; Li D; Wang ZL
    Adv Mater; 2018 Apr; 30(15):e1706790. PubMed ID: 29508454
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanoscale charge transfer and diffusion at the MoS
    Xu R; Ye S; Xu K; Lei L; Hussain S; Zheng Z; Pang F; Xing S; Liu X; Ji W; Cheng Z
    Nanotechnology; 2018 Aug; 29(35):355701. PubMed ID: 29873636
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Raising the Working Temperature of a Triboelectric Nanogenerator by Quenching Down Electron Thermionic Emission in Contact-Electrification.
    Xu C; Wang AC; Zou H; Zhang B; Zhang C; Zi Y; Pan L; Wang P; Feng P; Lin Z; Wang ZL
    Adv Mater; 2018 Sep; 30(38):e1803968. PubMed ID: 30091484
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of Surface Functional Groups on Electron Transfer at Liquid-Solid Interfacial Contact Electrification.
    Lin S; Zheng M; Luo J; Wang ZL
    ACS Nano; 2020 Aug; 14(8):10733-10741. PubMed ID: 32806074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interface inter-atomic electron-transition induced photon emission in contact-electrification.
    Li D; Xu C; Liao Y; Cai W; Zhu Y; Wang ZL
    Sci Adv; 2021 Sep; 7(39):eabj0349. PubMed ID: 34559569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In situ quantitative study of nanoscale triboelectrification and patterning.
    Zhou YS; Liu Y; Zhu G; Lin ZH; Pan C; Jing Q; Wang ZL
    Nano Lett; 2013 Jun; 13(6):2771-6. PubMed ID: 23627668
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Probing Contact-Electrification-Induced Electron and Ion Transfers at a Liquid-Solid Interface.
    Nie J; Ren Z; Xu L; Lin S; Zhan F; Chen X; Wang ZL
    Adv Mater; 2020 Jan; 32(2):e1905696. PubMed ID: 31782572
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanocontact electrification: patterned surface charges affecting adhesion, transfer, and printing.
    Cole JJ; Barry CR; Knuesel RJ; Wang X; Jacobs HO
    Langmuir; 2011 Jun; 27(11):7321-9. PubMed ID: 21526803
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Contact-Electrification between Two Identical Materials: Curvature Effect.
    Xu C; Zhang B; Wang AC; Zou H; Liu G; Ding W; Wu C; Ma M; Feng P; Lin Z; Wang ZL
    ACS Nano; 2019 Feb; 13(2):2034-2041. PubMed ID: 30707552
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of Photo-Excitation on Contact Electrification at Liquid-Solid Interface.
    Tao X; Nie J; Li S; Shi Y; Lin S; Chen X; Wang ZL
    ACS Nano; 2021 Jun; 15(6):10609-10617. PubMed ID: 34101417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Probing Contact Electrification: A Cohesively Sticky Problem.
    Sherrell PC; Sutka A; Shepelin NA; Lapcinskis L; Verners O; Germane L; Timusk M; Fenati RA; Malnieks K; Ellis AV
    ACS Appl Mater Interfaces; 2021 Sep; 13(37):44935-44947. PubMed ID: 34498850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dielectric Manipulated Charge Dynamics in Contact Electrification.
    Shi K; Chai B; Zou H; Min D; Li S; Jiang P; Huang X
    Research (Wash D C); 2022; 2022():9862980. PubMed ID: 35198985
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of Oxygen Vacancies and Cation Valence States on the Triboelectric Property of Substoichiometric Oxide Films.
    Zhu Y; Lin S; Gao W; Zhang M; Yang C; Feng P; Xu C; Wang ZL
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):35795-35803. PubMed ID: 34297527
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spontaneous Wetting Induced by Contact-Electrification at Liquid-Solid Interface.
    Tang Z; Yang D; Guo H; Lin S; Wang ZL
    Adv Mater; 2024 Jun; 36(25):e2400451. PubMed ID: 38529563
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantifying Contact-Electrification Induced Charge Transfer on a Liquid Droplet after Contacting with a Liquid or Solid.
    Tang Z; Lin S; Wang ZL
    Adv Mater; 2021 Oct; 33(42):e2102886. PubMed ID: 34476851
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantifying electron-transfer in liquid-solid contact electrification and the formation of electric double-layer.
    Lin S; Xu L; Chi Wang A; Wang ZL
    Nat Commun; 2020 Jan; 11(1):399. PubMed ID: 31964882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Manipulating nanoscale contact electrification by an applied electric field.
    Zhou YS; Wang S; Yang Y; Zhu G; Niu S; Lin ZH; Liu Y; Wang ZL
    Nano Lett; 2014 Mar; 14(3):1567-72. PubMed ID: 24479730
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanoscale Modulation of Friction and Triboelectrification via Surface Nanotexturing.
    Li Q; Cho IH; Biswas R; Kim J
    Nano Lett; 2019 Feb; 19(2):850-856. PubMed ID: 30640469
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.