These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Proton conductivity as a function of the metal center in porphyrinylphosphonate-based MOFs. Enakieva YY; Zhigileva EA; Fitch AN; Chernyshev VV; Stenina IA; Yaroslavtsev AB; Sinelshchikova AA; Kovalenko KA; Gorbunova YG; Tsivadze AY Dalton Trans; 2021 May; 50(19):6549-6560. PubMed ID: 33890610 [TBL] [Abstract][Full Text] [Related]
4. An anionic porphyrinylphosphonate-based hydrogen-bonded organic framework: optimization of proton conductivity through the exchange of counterions. Zhigileva EA; Enakieva YY; Sinelshchikova AA; Chernyshev VV; Senchikhin IN; Kovalenko KA; Stenina IA; Yaroslavtsev AB; Gorbunova YG; Tsivadze AY Dalton Trans; 2023 Jun; 52(24):8237-8246. PubMed ID: 37249348 [TBL] [Abstract][Full Text] [Related]
5. An unexpected imidazole-induced porphyrinylphosphonate-based MOF-to-HOF structural transformation leading to the enhancement of proton conductivity. Zhigileva EA; Enakieva YY; Chernyshev VV; Senchikhin IN; Demina LI; Martynov AG; Stenina IA; Yaroslavtsev AB; Gorbunova YG; Tsivadze AY Dalton Trans; 2024 Oct; 53(39):16345-16354. PubMed ID: 39315440 [TBL] [Abstract][Full Text] [Related]
6. pH-dependent proton conducting behavior in a metal-organic framework material. Phang WJ; Lee WR; Yoo K; Ryu DW; Kim B; Hong CS Angew Chem Int Ed Engl; 2014 Aug; 53(32):8383-7. PubMed ID: 24986637 [TBL] [Abstract][Full Text] [Related]
7. A Tetradentate Phosphonate Ligand-based Ni-MOF as a Support for Designing High-performance Proton-conducting Materials. Chakraborty D; Ghorai A; Chowdhury A; Banerjee S; Bhaumik A Chem Asian J; 2021 Jun; 16(12):1562-1569. PubMed ID: 33885226 [TBL] [Abstract][Full Text] [Related]
8. Hydrogen-Bonded Organic Frameworks (HOFs): A New Class of Porous Crystalline Proton-Conducting Materials. Karmakar A; Illathvalappil R; Anothumakkool B; Sen A; Samanta P; Desai AV; Kurungot S; Ghosh SK Angew Chem Int Ed Engl; 2016 Aug; 55(36):10667-71. PubMed ID: 27464784 [TBL] [Abstract][Full Text] [Related]
9. Single Crystal Proton Conduction Study of a Metal Organic Framework of Modest Water Stability. Joarder B; Lin JB; Romero Z; Shimizu GKH J Am Chem Soc; 2017 May; 139(21):7176-7179. PubMed ID: 28510427 [TBL] [Abstract][Full Text] [Related]
10. Synergy between Isomorphous Acid and Basic Metal-Organic Frameworks for Anhydrous Proton Conduction of Low-Cost Hybrid Membranes at High Temperatures. Dong XY; Wang JH; Liu SS; Han Z; Tang QJ; Li FF; Zang SQ ACS Appl Mater Interfaces; 2018 Nov; 10(44):38209-38216. PubMed ID: 30360073 [TBL] [Abstract][Full Text] [Related]
11. Three-Dimensional Metal-Catecholate Frameworks and Their Ultrahigh Proton Conductivity. Nguyen NT; Furukawa H; Gándara F; Trickett CA; Jeong HM; Cordova KE; Yaghi OM J Am Chem Soc; 2015 Dec; 137(49):15394-7. PubMed ID: 26595681 [TBL] [Abstract][Full Text] [Related]
12. A multifunctional anionic metal-organic framework for high proton conductivity and photoreduction of CO Sun HX; Wang HN; Fu YM; Meng X; He YO; Yang RG; Zhou Z; Su ZM Dalton Trans; 2022 Mar; 51(12):4798-4805. PubMed ID: 35253826 [TBL] [Abstract][Full Text] [Related]
13. Two-in-one: inherent anhydrous and water-assisted high proton conduction in a 3D metal-organic framework. Nagarkar SS; Unni SM; Sharma A; Kurungot S; Ghosh SK Angew Chem Int Ed Engl; 2014 Mar; 53(10):2638-42. PubMed ID: 24375824 [TBL] [Abstract][Full Text] [Related]
14. Proton-Conductive Cerium-Based Metal-Organic Frameworks. Ho WH; Li SC; Wang YC; Chang TE; Chiang YT; Li YP; Kung CW ACS Appl Mater Interfaces; 2021 Nov; 13(46):55358-55366. PubMed ID: 34757712 [TBL] [Abstract][Full Text] [Related]
15. Proton Transport in a Highly Conductive Porous Zirconium-Based Metal-Organic Framework: Molecular Insight. Borges DD; Devautour-Vinot S; Jobic H; Ollivier J; Nouar F; Semino R; Devic T; Serre C; Paesani F; Maurin G Angew Chem Int Ed Engl; 2016 Mar; 55(12):3919-24. PubMed ID: 26889765 [TBL] [Abstract][Full Text] [Related]
16. A Comparative Study of Proton Conduction Between a 2D Zinc(II) MOF and Its Corresponding Organic Ligand. Shi ZQ; Ji NN; Wang MH; Li G Inorg Chem; 2020 Apr; 59(7):4781-4789. PubMed ID: 32148025 [TBL] [Abstract][Full Text] [Related]
17. Unique Proton Dynamics in an Efficient MOF-Based Proton Conductor. Wei YS; Hu XP; Han Z; Dong XY; Zang SQ; Mak TC J Am Chem Soc; 2017 Mar; 139(9):3505-3512. PubMed ID: 28192991 [TBL] [Abstract][Full Text] [Related]
18. Efficiently Boosting Moisture Retention Capacity of Porous Superprotonic Conducting MOF-802 at Ambient Humidity via Forming a Hydrogel Composite Strategy. Zhang J; He X; Kong YR; Luo HB; Liu M; Liu Y; Ren XM ACS Appl Mater Interfaces; 2021 Aug; 13(31):37231-37238. PubMed ID: 34324287 [TBL] [Abstract][Full Text] [Related]
19. Proton Conductivity in a Metal-Organic Cube-Based Framework and Derived Hydrogel with Tubular Morphology. Sutar P; Das TN; Jena R; Dutta D; Bhattacharyya AJ; Maji TK Langmuir; 2024 Mar; 40(11):5913-5922. PubMed ID: 38436582 [TBL] [Abstract][Full Text] [Related]
20. Thermal-Response Proton Conduction in Schiff Base-Incorporated Metal-Organic Framework Hybrid Membranes under Low Humidity Based on the Excited-State Intramolecular Proton Transfer Mechanism. Du Z; Zhang F; Lin H; Guo W; Tian M; Yu K; Gao D; Qu F ACS Appl Mater Interfaces; 2023 Feb; ():. PubMed ID: 36763966 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]