These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

227 related articles for article (PubMed ID: 31095915)

  • 1. Tailoring of Interfacial Band Offsets by an Atomically Thin Polar Insulating Layer To Enhance the Water-Splitting Performance of Oxide Heterojunction Photoanodes.
    Kim TL; Choi MJ; Lee TH; Sohn W; Jang HW
    Nano Lett; 2019 Sep; 19(9):5897-5903. PubMed ID: 31095915
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Controlled Band Offsets in Ultrathin Hematite for Enhancing the Photoelectrochemical Water Splitting Performance of Heterostructured Photoanodes.
    Choi MJ; Kim TL; Choi KS; Sohn W; Lee TH; Lee SA; Park H; Jeong SY; Yang JW; Lee S; Jang HW
    ACS Appl Mater Interfaces; 2022 Feb; 14(6):7788-7795. PubMed ID: 35040620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced electrical transparency by ultrathin LaAlO3 insertion at oxide metal/semiconductor heterointerfaces.
    Yajima T; Minohara M; Bell C; Kumigashira H; Oshima M; Hwang HY; Hikita Y
    Nano Lett; 2015 Mar; 15(3):1622-6. PubMed ID: 25654211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Impact of NiCo
    Wang H; Wang Y; Lin Y; Huang X; García-Tecedor M; de la Peña O'Shea VA; Murrill C; Lazarov VK; Oropeza FE; Zhang KHL
    ACS Appl Mater Interfaces; 2023 Jun; 15(23):28739-28746. PubMed ID: 37253189
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Interfacial engineering of 1D/2D heterostructured photoanode for efficient photoelectrochemical water splitting.
    Wang Z; Qin Y; Wu X; He K; Li X; Wang J
    Nanotechnology; 2022 Sep; 33(49):. PubMed ID: 35977454
    [TBL] [Abstract][Full Text] [Related]  

  • 6. BiVO
    Baek JH; Kim BJ; Han GS; Hwang SW; Kim DR; Cho IS; Jung HS
    ACS Appl Mater Interfaces; 2017 Jan; 9(2):1479-1487. PubMed ID: 27989115
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Three-Dimensional WO
    Wang Y; Tian W; Chen L; Cao F; Guo J; Li L
    ACS Appl Mater Interfaces; 2017 Nov; 9(46):40235-40243. PubMed ID: 29067799
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interfacial Charge Transport in 1D TiO
    Yu Z; Liu H; Zhu M; Li Y; Li W
    Small; 2021 Mar; 17(9):e1903378. PubMed ID: 31657147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. ZnO-Au-SnO2 Z-scheme photoanodes for remarkable photoelectrochemical water splitting.
    Li JM; Cheng HY; Chiu YH; Hsu YJ
    Nanoscale; 2016 Aug; 8(34):15720-9. PubMed ID: 27527337
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Interface engineering of a hierarchical Zn
    Zhang M; Chu X; Zhang H; Huang F; Liu P; Li S
    Phys Chem Chem Phys; 2021 Apr; 23(15):9347-9356. PubMed ID: 33885073
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interface and surface engineering of hematite photoanode for efficient solar water oxidation.
    Chen X; Fu Y; Hong L; Kong T; Shi X; Wang G; Qu L; Shen S
    J Chem Phys; 2020 Jun; 152(24):244707. PubMed ID: 32610948
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plasmon-induced hole-depletion layer on p-n heterojunction for highly efficient photoelectrochemical water splitting.
    Hu Z; Wang R; Han C; Chen R
    J Colloid Interface Sci; 2022 Dec; 628(Pt B):946-954. PubMed ID: 36041246
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Revealing the relationship between photoelectrochemical performance and interface hole trapping in CuBi
    Song A; Levine I; van de Krol R; Dittrich T; Berglund SP
    Chem Sci; 2020 Sep; 11(41):11195-11204. PubMed ID: 34094360
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fe
    Wang Q; Zong X; Tian L; Han Y; Ding Y; Xu C; Tao R; Fan X
    ChemSusChem; 2022 Mar; 15(5):e202102377. PubMed ID: 35014210
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heterostructured WO
    Alruwaili M; Roy A; Alhabradi M; Yang X; Chang H; Tahir AA
    Heliyon; 2024 Feb; 10(3):e25446. PubMed ID: 38322971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Photoelectrochemical Water Splitting: A Visible-Light-Driven CoTiO
    Sundararaj SB; Amir H; Viswanathan C; Thangavelu S
    Langmuir; 2024 Jul; ():. PubMed ID: 39046450
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Constructing NCuS Interface Chemical Bonds over SnS
    Zhang C; Wang M; Gao K; Zhu H; Ma J; Fang X; Wang X; Ding Y
    Small; 2023 Jan; 19(3):e2205706. PubMed ID: 36408820
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Integrating Computation and Experiment to Investigate Photoelectrodes for Solar Water Splitting at the Microscopic Scale.
    Wang W; Radmilovic A; Choi KS; Galli G
    Acc Chem Res; 2021 Oct; 54(20):3863-3872. PubMed ID: 34619961
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Epitaxial Bi
    Huang W; Harnagea C; Tong X; Benetti D; Sun S; Chaker M; Rosei F; Nechache R
    ACS Appl Mater Interfaces; 2019 Apr; 11(14):13185-13193. PubMed ID: 30892871
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interfacial charge dynamics in type-II heterostructured sulfur doped-graphitic carbon nitride/bismuth tungstate as competent photoelectrocatalytic water splitting photoanode.
    Murugan C; Ranjithkumar K; Pandikumar A
    J Colloid Interface Sci; 2021 Nov; 602():437-451. PubMed ID: 34139539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.