These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 31095935)

  • 1. Surgical preparations, labeling strategies, and optical techniques for cell-resolved, in vivo imaging in the mouse spinal cord.
    Cheng YT; Lett KM; Schaffer CB
    Exp Neurol; 2019 Aug; 318():192-204. PubMed ID: 31095935
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Two-photon imaging of spinal cord cellular networks.
    Johannssen HC; Helmchen F
    Exp Neurol; 2013 Apr; 242():18-26. PubMed ID: 22849822
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vivo two-photon imaging of motoneurons and adjacent glia in the ventral spinal cord.
    Cartarozzi LP; Rieder P; Bai X; Scheller A; Oliveira ALR; Kirchhoff F
    J Neurosci Methods; 2018 Apr; 299():8-15. PubMed ID: 29408351
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Imaging the dynamic interactions between immune cells and the neurovascular interface in the spinal cord.
    Borjini N; Paouri E; Tognatta R; Akassoglou K; Davalos D
    Exp Neurol; 2019 Dec; 322():113046. PubMed ID: 31472115
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-photon excited fluorescence microscopy enables imaging of blood flow, neural structure and inflammatory response deep into mouse spinal cord
    Cheng YT; Lett KM; Xu C; Schaffer CB
    bioRxiv; 2024 Apr; ():. PubMed ID: 38617307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Label-free identification of the microstructure of rat spinal cords based on nonlinear optical microscopy.
    Liao CX; Wang ZY; Zhou Y; Zhou LQ; Zhu XQ; Liu WG; Chen JX
    J Microsc; 2017 Aug; 267(2):143-149. PubMed ID: 28319259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A spinal cord window chamber model for in vivo longitudinal multimodal optical and acoustic imaging in a murine model.
    Figley SA; Chen Y; Maeda A; Conroy L; McMullen JD; Silver JI; Stapleton S; Vitkin A; Lindsay P; Burrell K; Zadeh G; Fehlings MG; DaCosta RS
    PLoS One; 2013; 8(3):e58081. PubMed ID: 23516432
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo imaging: a dynamic imaging approach to study spinal cord regeneration.
    Laskowski CJ; Bradke F
    Exp Neurol; 2013 Apr; 242():11-7. PubMed ID: 22836145
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In vivo imaging of the mouse spinal cord using two-photon microscopy.
    Davalos D; Akassoglou K
    J Vis Exp; 2012 Jan; (59):e2760. PubMed ID: 22258623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium imaging approaches in investigation of pain mechanism in the spinal cord.
    Xu Q; Dong X
    Exp Neurol; 2019 Jul; 317():129-132. PubMed ID: 30853387
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A procedure for implanting a spinal chamber for longitudinal in vivo imaging of the mouse spinal cord.
    Farrar MJ; Schaffer CB
    J Vis Exp; 2014 Dec; (94):. PubMed ID: 25548864
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intravital imaging of immune cells and their interactions with other cell types in the spinal cord: Experiments with multicolored moving cells.
    Evans TA; Barkauskas DS; Silver J
    Exp Neurol; 2019 Oct; 320():112972. PubMed ID: 31234058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Imaging Serotonergic Fibers in the Mouse Spinal Cord Using the CLARITY/CUBIC Technique.
    Liang H; Schofield E; Paxinos G
    J Vis Exp; 2016 Feb; (108):53673. PubMed ID: 26967767
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Rapid fluorescence imaging of spinal cord following epidural administration of a nerve-highlighting fluorophore.
    Liu W; Gu R; Zhu Q; Xiao C; Huang L; Zhuang X; Zhang J; Liu L; Ma B; Yang H; Ma J; Hu Z; Tang C; Zhao S; Chen X
    Theranostics; 2017; 7(7):1863-1874. PubMed ID: 28638473
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intravital multiphoton fluorescence imaging and optical manipulation of spinal cord in mice, using a compact fiber laser system.
    Oshima Y; Horiuch H; Honkura N; Hikita A; Ogata T; Miura H; Imamura T
    Lasers Surg Med; 2014 Sep; 46(7):563-72. PubMed ID: 24912089
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toward a brighter constellation: multiorgan neuroimaging of neural and vascular dynamics in the spinal cord and brain.
    Celinskis D; Black CJ; Murphy J; Barrios-Anderson A; Friedman NG; Shaner NC; Saab CY; Gomez-Ramirez M; Borton DA; Moore CI
    Neurophotonics; 2024 Apr; 11(2):024209. PubMed ID: 38725801
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Towards a Brighter Constellation: Multi-Organ Neuroimaging of Neural and Vascular Dynamics in the Spinal Cord and Brain.
    Celinskis D; Black CJ; Murphy J; Barrios-Anderson A; Friedman N; Shaner NC; Saab C; Gomez-Ramirez M; Lipscombe D; Borton DA; Moore CI
    bioRxiv; 2023 Dec; ():. PubMed ID: 38234789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Endogenous Two-Photon Excited Fluorescence Provides Label-Free Visualization of the Inflammatory Response in the Rodent Spinal Cord.
    Uckermann O; Galli R; Beiermeister R; Sitoci-Ficici KH; Later R; Leipnitz E; Neuwirth A; Chavakis T; Koch E; Schackert G; Steiner G; Kirsch M
    Biomed Res Int; 2015; 2015():859084. PubMed ID: 26355949
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 15.