These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 31095935)

  • 21. Imaging the Deep Spinal Cord Microvascular Structure and Function with High-Speed NIR-II Fluorescence Microscopy.
    Zhang H; Zhu L; Gao DS; Liu Y; Zhang J; Yan M; Qian J; Xi W
    Small Methods; 2022 Aug; 6(8):e2200155. PubMed ID: 35599368
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Long-term in vivo imaging of mouse spinal cord through an optically cleared intervertebral window.
    Wu W; He S; Wu J; Chen C; Li X; Liu K; Qu JY
    Nat Commun; 2022 Apr; 13(1):1959. PubMed ID: 35414131
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Imaging synaptically mediated responses produced by brainstem inputs onto identified spinal neurons in the neonatal mouse.
    Szokol K; Perreault MC
    J Neurosci Methods; 2009 May; 180(1):1-8. PubMed ID: 19427523
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Two-photon laser-scanning microscopy for single and repetitive imaging of dorsal and lateral spinal white matter in vivo.
    Nadrigny F; Le Meur K; Schomburg ED; Safavi-Abbasi S; Dibaj P
    Physiol Res; 2017 Jul; 66(3):531-537. PubMed ID: 28248542
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Two-photon fluorescent imaging of myelination in the spinal cord.
    Condie AG; Gerson SL; Miller RH; Wang Y
    ChemMedChem; 2012 Dec; 7(12):2194-203. PubMed ID: 23136014
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Evaluation of cranial window types for in vivo two-photon imaging of brain microstructures.
    Isshiki M; Okabe S
    Microscopy (Oxf); 2014 Feb; 63(1):53-63. PubMed ID: 24212360
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Awake Mouse Imaging: From Two-Photon Microscopy to Blood Oxygen Level-Dependent Functional Magnetic Resonance Imaging.
    Desjardins M; Kılıç K; Thunemann M; Mateo C; Holland D; Ferri CGL; Cremonesi JA; Li B; Cheng Q; Weldy KL; Saisan PA; Kleinfeld D; Komiyama T; Liu TT; Bussell R; Wong EC; Scadeng M; Dunn AK; Boas DA; Sakadžić S; Mandeville JB; Buxton RB; Dale AM; Devor A
    Biol Psychiatry Cogn Neurosci Neuroimaging; 2019 Jun; 4(6):533-542. PubMed ID: 30691968
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Heterodyne detected nonlinear optical imaging in a lock-in free manner.
    Slipchenko MN; Oglesbee RA; Zhang D; Wu W; Cheng JX
    J Biophotonics; 2012 Oct; 5(10):801-7. PubMed ID: 22389310
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two-photon imaging of cellular dynamics in the mouse spinal cord.
    Weinger JG; Greenberg ML; Matheu MP; Parker I; Walsh CM; Lane TE; Cahalan MD
    J Vis Exp; 2015 Feb; (96):. PubMed ID: 25742043
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A ratiometric two-photon probe for Ca
    Kim HJ; Lim CS; Lee HW; Lee HS; Um YJ; Kumar H; Han I; Kim HM
    Biomaterials; 2017 Oct; 141():251-259. PubMed ID: 28697466
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Diffusion tensor imaging of mouse brain stem and cervical spinal cord.
    Kim JH; Haldar J; Liang ZP; Song SK
    J Neurosci Methods; 2009 Jan; 176(2):186-91. PubMed ID: 18834905
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Intravital FRET: Probing Cellular and Tissue Function in Vivo.
    Radbruch H; Bremer D; Mothes R; Günther R; Rinnenthal JL; Pohlan J; Ulbricht C; Hauser AE; Niesner R
    Int J Mol Sci; 2015 May; 16(5):11713-27. PubMed ID: 26006244
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Characterization of blood flow in the mouse dorsal spinal venous system before and after dorsal spinal vein occlusion.
    Farrar MJ; Rubin JD; Diago DM; Schaffer CB
    J Cereb Blood Flow Metab; 2015 Mar; 35(4):667-75. PubMed ID: 25564237
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Two-photon-excited fluorescence microscopy as a tool to investigate the efficacy of methylprednisolone in a mouse spinal cord injury model.
    Zhang Y; Zhang L; Shen J; Chen C; Mao Z; Li W; Gan WB; Tang P
    Spine (Phila Pa 1976); 2014 Apr; 39(8):E493-9. PubMed ID: 24480947
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Advances in Intravital Non-Linear Optical Imaging of the Central Nervous System in Rodents.
    Rougon G; Brasselet S; Debarbieux F
    Brain Plast; 2016 Dec; 2(1):31-48. PubMed ID: 29765847
    [No Abstract]   [Full Text] [Related]  

  • 36. Cranial and Spinal Window Preparation for
    Yeon C; Im JM; Kim M; Kim YR; Chung E
    Exp Neurobiol; 2022 Jun; 31(3):131-146. PubMed ID: 35786637
    [TBL] [Abstract][Full Text] [Related]  

  • 37. In vivo calcium imaging from dentate granule cells with wide-field fluorescence microscopy.
    Hayashi Y; Yawata S; Funabiki K; Hikida T
    PLoS One; 2017; 12(7):e0180452. PubMed ID: 28700611
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Vibrational spectroscopic imaging and multiphoton microscopy of spinal cord injury.
    Galli R; Uckermann O; Winterhalder MJ; Sitoci-Ficici KH; Geiger KD; Koch E; Schackert G; Zumbusch A; Steiner G; Kirsch M
    Anal Chem; 2012 Oct; 84(20):8707-14. PubMed ID: 22970705
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Live animal myelin histomorphometry of the spinal cord with video-rate multimodal nonlinear microendoscopy.
    Bélanger E; Crépeau J; Laffray S; Vallée R; De Koninck Y; Côté D
    J Biomed Opt; 2012 Feb; 17(2):021107. PubMed ID: 22463025
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.