These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 31096043)

  • 1. Bioprinting of stem cell expansion lattices.
    Lindsay CD; Roth JG; LeSavage BL; Heilshorn SC
    Acta Biomater; 2019 Sep; 95():225-235. PubMed ID: 31096043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Wood-based nanocellulose and bioactive glass modified gelatin-alginate bioinks for 3D bioprinting of bone cells.
    Ojansivu M; Rashad A; Ahlinder A; Massera J; Mishra A; Syverud K; Finne-Wistrand A; Miettinen S; Mustafa K
    Biofabrication; 2019 Apr; 11(3):035010. PubMed ID: 30754034
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D Bioprinting Human Induced Pluripotent Stem Cell Constructs for In Situ Cell Proliferation and Successive Multilineage Differentiation.
    Gu Q; Tomaskovic-Crook E; Wallace GG; Crook JM
    Adv Healthc Mater; 2017 Sep; 6(17):. PubMed ID: 28544655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cell-laden four-dimensional bioprinting using near-infrared-triggered shape-morphing alginate/polydopamine bioinks.
    Luo Y; Lin X; Chen B; Wei X
    Biofabrication; 2019 Sep; 11(4):045019. PubMed ID: 31394520
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Graphene oxide/alginate composites as novel bioinks for three-dimensional mesenchymal stem cell printing and bone regeneration applications.
    Choe G; Oh S; Seok JM; Park SA; Lee JY
    Nanoscale; 2019 Dec; 11(48):23275-23285. PubMed ID: 31782460
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhanced rheological behaviors of alginate hydrogels with carrageenan for extrusion-based bioprinting.
    Kim MH; Lee YW; Jung WK; Oh J; Nam SY
    J Mech Behav Biomed Mater; 2019 Oct; 98():187-194. PubMed ID: 31252328
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human stem cell based corneal tissue mimicking structures using laser-assisted 3D bioprinting and functional bioinks.
    Sorkio A; Koch L; Koivusalo L; Deiwick A; Miettinen S; Chichkov B; Skottman H
    Biomaterials; 2018 Jul; 171():57-71. PubMed ID: 29684677
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tuning Alginate-Gelatin Bioink Properties by Varying Solvent and Their Impact on Stem Cell Behavior.
    Li Z; Huang S; Liu Y; Yao B; Hu T; Shi H; Xie J; Fu X
    Sci Rep; 2018 May; 8(1):8020. PubMed ID: 29789674
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multicomponent polysaccharide alginate-based bioinks.
    Piras CC; Smith DK
    J Mater Chem B; 2020 Sep; 8(36):8171-8188. PubMed ID: 32776063
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functional 3D Neural Mini-Tissues from Printed Gel-Based Bioink and Human Neural Stem Cells.
    Gu Q; Tomaskovic-Crook E; Lozano R; Chen Y; Kapsa RM; Zhou Q; Wallace GG; Crook JM
    Adv Healthc Mater; 2016 Jun; 5(12):1429-38. PubMed ID: 27028356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage.
    Daly AC; Critchley SE; Rencsok EM; Kelly DJ
    Biofabrication; 2016 Oct; 8(4):045002. PubMed ID: 27716628
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Employing PEG crosslinkers to optimize cell viability in gel phase bioinks and tailor post printing mechanical properties.
    Rutz AL; Gargus ES; Hyland KE; Lewis PL; Setty A; Burghardt WR; Shah RN
    Acta Biomater; 2019 Nov; 99():121-132. PubMed ID: 31539655
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Review of alginate-based hydrogel bioprinting for application in tissue engineering.
    Rastogi P; Kandasubramanian B
    Biofabrication; 2019 Sep; 11(4):042001. PubMed ID: 31315105
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The cell in the ink: Improving biofabrication by printing stem cells for skeletal regenerative medicine.
    Cidonio G; Glinka M; Dawson JI; Oreffo ROC
    Biomaterials; 2019 Jul; 209():10-24. PubMed ID: 31022557
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The influence of printing parameters on cell survival rate and printability in microextrusion-based 3D cell printing technology.
    Zhao Y; Li Y; Mao S; Sun W; Yao R
    Biofabrication; 2015 Nov; 7(4):045002. PubMed ID: 26523399
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Alginate Hydrogel Modified with a Ligand Interacting with α3β1 Integrin Receptor Promotes the Differentiation of 3D Neural Spheroids toward Oligodendrocytes in Vitro.
    Wen H; Xiao W; Biswas S; Cong ZQ; Liu XM; Lam KS; Liao YH; Deng W
    ACS Appl Mater Interfaces; 2019 Feb; 11(6):5821-5833. PubMed ID: 30645095
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Meniscus ECM-functionalised hydrogels containing infrapatellar fat pad-derived stem cells for bioprinting of regionally defined meniscal tissue.
    Romanazzo S; Vedicherla S; Moran C; Kelly DJ
    J Tissue Eng Regen Med; 2018 Mar; 12(3):e1826-e1835. PubMed ID: 29105354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An Interpenetrating Alginate/Gelatin Network for Three-Dimensional (3D) Cell Cultures and Organ Bioprinting.
    Chen Q; Tian X; Fan J; Tong H; Ao Q; Wang X
    Molecules; 2020 Feb; 25(3):. PubMed ID: 32050529
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Differentiation potential of human adipose stem cells bioprinted with hyaluronic acid/gelatin-based bioink through microextrusion and visible light-initiated crosslinking.
    Sakai S; Ohi H; Hotta T; Kamei H; Taya M
    Biopolymers; 2018 Feb; 109(2):. PubMed ID: 29139103
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Pore-forming bioinks to enable spatio-temporally defined gene delivery in bioprinted tissues.
    Gonzalez-Fernandez T; Rathan S; Hobbs C; Pitacco P; Freeman FE; Cunniffe GM; Dunne NJ; McCarthy HO; Nicolosi V; O'Brien FJ; Kelly DJ
    J Control Release; 2019 May; 301():13-27. PubMed ID: 30853527
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.