BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 31096349)

  • 21. CORAL: QSAR models for acute toxicity in fathead minnow (Pimephales promelas).
    Toropova AP; Toropov AA; Lombardo A; Roncaglioni A; Benfenati E; Gini G
    J Comput Chem; 2012 May; 33(12):1218-23. PubMed ID: 22371019
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Quantitative structure-activity relationship modeling of the toxicity of organothiophosphate pesticides to Daphnia magna and Cyprinus carpio.
    Zvinavashe E; Du T; Griff T; van den Berg HH; Soffers AE; Vervoort J; Murk AJ; Rietjens IM
    Chemosphere; 2009 Jun; 75(11):1531-8. PubMed ID: 19376559
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantum chemistry based quantitative structure-activity relationships for modeling the (sub)acute toxicity of substituted mononitrobenzenes in aquatic systems.
    Zvinavashe E; Murk AJ; Vervoort J; Soffers AE; Freidig A; Rietjens IM
    Environ Toxicol Chem; 2006 Sep; 25(9):2313-21. PubMed ID: 16986785
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicting Cytotoxicity of 2-Phenylindole Derivatives Against Breast Cancer Cells Using Index of Ideality of Correlation.
    Toropov AA; Toropova AP
    Anticancer Res; 2018 Nov; 38(11):6189-6194. PubMed ID: 30396936
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Monte Carlo-based quantitative structure-activity relationship models for toxicity of organic chemicals to Daphnia magna.
    Toropova AP; Toropov AA; Veselinović AM; Veselinović JB; Leszczynska D; Leszczynski J
    Environ Toxicol Chem; 2016 Nov; 35(11):2691-2697. PubMed ID: 27110865
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Use of Quasi-SMILES and Monte Carlo Optimization to Develop Quantitative Feature Property/Activity Relationships (QFPR/QFAR) for Nanomaterials.
    Toropov AA; Rallo R; Toropova AP
    Curr Top Med Chem; 2015; 15(18):1837-44. PubMed ID: 25961527
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Ecosystem ecology: Models for acute toxicity of pesticides towards Daphnia magna.
    Cappelli CI; Toropov AA; Toropova AP; Benfenati E
    Environ Toxicol Pharmacol; 2020 Nov; 80():103459. PubMed ID: 32721590
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The Use of the Index of Ideality of Correlation to Build Up Models for Bioconcentration Factor.
    Toropova AP; Duchowicz PR; Saavedra LM; Castro EA; Toropov AA
    Mol Inform; 2020 Jul; 39(7):e1900070. PubMed ID: 31943818
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular toxicity of nitrobenzene derivatives to tetrahymena pyriformis based on SMILES descriptors using Monte Carlo, docking, and MD simulations.
    Ouabane M; Zaki K; Tabti K; Alaqarbeh M; Sbai A; Sekkate C; Bouachrine M; Lakhlifi T
    Comput Biol Med; 2024 Feb; 169():107880. PubMed ID: 38211383
    [TBL] [Abstract][Full Text] [Related]  

  • 30. In silico enhancement of azo dye adsorption affinity for cellulose fibre through mechanistic interpretation under guidance of QSPR models using Monte Carlo method with index of ideality correlation.
    Kumar P; Kumar A
    SAR QSAR Environ Res; 2020 Sep; 31(9):697-715. PubMed ID: 32878494
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The coefficient of conformism of a correlative prediction (CCCP): Building up reliable nano-QSPRs/QSARs for endpoints of nanoparticles in different experimental conditions encoded via quasi-SMILES.
    Toropova AP; Toropov AA
    Sci Total Environ; 2024 Jun; 927():172119. PubMed ID: 38569951
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Idealization of correlations between optimal simplified molecular input-line entry system-based descriptors and skin sensitization.
    Toropov AA; Toropova AP; Selvestrel G; Benfenati E
    SAR QSAR Environ Res; 2019 Jun; 30(6):447-455. PubMed ID: 31124730
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Whether the Validation of the Predictive Potential of Toxicity Models is a Solved Task?
    Toropova AP; Toropov AA
    Curr Top Med Chem; 2019; 19(29):2643-2657. PubMed ID: 31702504
    [TBL] [Abstract][Full Text] [Related]  

  • 34. QSAR studies of comparative toxicity in aquatic organisms.
    Cronin MT; Dearden JC; Dobbs AJ
    Sci Total Environ; 1991 Dec; 109-110():431-9. PubMed ID: 1815364
    [TBL] [Abstract][Full Text] [Related]  

  • 35. QSPR/QSAR: State-of-Art, Weirdness, the Future.
    Toropov AA; Toropova AP
    Molecules; 2020 Mar; 25(6):. PubMed ID: 32178379
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development of models to predict fish early-life stage toxicity from acute Daphnia magna toxicity
    Furuhama A; Hayashi TI; Yamamoto H
    SAR QSAR Environ Res; 2018 Sep; 29(9):725-742. PubMed ID: 30182748
    [TBL] [Abstract][Full Text] [Related]  

  • 37. How the CORAL software can be used to select compounds for efficient treatment of neurodegenerative diseases?
    Toropova AP; Toropov AA; Leszczynska D; Leszczynski J
    Toxicol Appl Pharmacol; 2020 Dec; 408():115276. PubMed ID: 33058887
    [TBL] [Abstract][Full Text] [Related]  

  • 38. QSAR model for pesticides toxicity to Rainbow Trout based on "ideal correlations".
    Toropov AA; Toropova AP; Benfenati E
    Aquat Toxicol; 2020 Oct; 227():105589. PubMed ID: 32841884
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The searching for agents for Alzheimer's disease treatment via the system of self-consistent models.
    Toropov AA; Toropova AP; Achary PGR; Raškova M; Raška I
    Toxicol Mech Methods; 2022 Sep; 32(7):549-557. PubMed ID: 35287529
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multispecies QSAR modeling for predicting the aquatic toxicity of diverse organic chemicals for regulatory toxicology.
    Singh KP; Gupta S; Kumar A; Mohan D
    Chem Res Toxicol; 2014 May; 27(5):741-53. PubMed ID: 24738471
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.