These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
133 related articles for article (PubMed ID: 31096351)
1. The effect of water treatment unit processes on cyanobacterial trichome integrity. Pestana CJ; Capelo-Neto J; Lawton L; Oliveira S; Carloto I; Linhares HP Sci Total Environ; 2019 Apr; 659():1403-1414. PubMed ID: 31096351 [TBL] [Abstract][Full Text] [Related]
2. Co-Occurrence of Microcystins and Taste-and-Odor Compounds in Drinking Water Source and Their Removal in a Full-Scale Drinking Water Treatment Plant. Shang L; Feng M; Xu X; Liu F; Ke F; Li W Toxins (Basel); 2018 Jan; 10(1):. PubMed ID: 29301296 [TBL] [Abstract][Full Text] [Related]
3. Species-dependence of cyanobacteria removal efficiency by different drinking water treatment processes. Zamyadi A; Dorner S; Sauvé S; Ellis D; Bolduc A; Bastien C; Prévost M Water Res; 2013 May; 47(8):2689-700. PubMed ID: 23515107 [TBL] [Abstract][Full Text] [Related]
4. Fate of toxic cyanobacterial genera from natural bloom events during ozonation. Zamyadi A; Coral LA; Barbeau B; Dorner S; Lapolli FR; Prévost M Water Res; 2015 Apr; 73():204-15. PubMed ID: 25682048 [TBL] [Abstract][Full Text] [Related]
5. Management of toxic cyanobacteria for drinking water production of Ain Zada Dam. Saoudi A; Brient L; Boucetta S; Ouzrout R; Bormans M; Bensouilah M Environ Monit Assess; 2017 Jul; 189(7):361. PubMed ID: 28667413 [TBL] [Abstract][Full Text] [Related]
6. Can Cyanobacterial Diversity in the Source Predict the Diversity in Sludge and the Risk of Toxin Release in a Drinking Water Treatment Plant? Jalili F; Trigui H; Guerra Maldonado JF; Dorner S; Zamyadi A; Shapiro BJ; Terrat Y; Fortin N; Sauvé S; Prévost M Toxins (Basel); 2021 Jan; 13(1):. PubMed ID: 33401450 [TBL] [Abstract][Full Text] [Related]
7. Coupling membranes as energy-transmitting cables. II. Cyanobacterial trichomes. Severina II; Skulachev VP; Zorov DB J Cell Biol; 1988 Aug; 107(2):497-501. PubMed ID: 3138245 [TBL] [Abstract][Full Text] [Related]
8. Toxic cyanobacterial breakthrough and accumulation in a drinking water plant: a monitoring and treatment challenge. Zamyadi A; MacLeod SL; Fan Y; McQuaid N; Dorner S; Sauvé S; Prévost M Water Res; 2012 Apr; 46(5):1511-23. PubMed ID: 22137293 [TBL] [Abstract][Full Text] [Related]
9. Assessment of the roles of reactive oxygen species in the UV and visible light photocatalytic degradation of cyanotoxins and water taste and odor compounds using C-TiO2. Fotiou T; Triantis TM; Kaloudis T; O'Shea KE; Dionysiou DD; Hiskia A Water Res; 2016 Mar; 90():52-61. PubMed ID: 26724439 [TBL] [Abstract][Full Text] [Related]
10. The role of hydraulic conditions of coagulation and flocculation on the damage of cyanobacteria. Clemente A; Wilson A; Oliveira S; Menezes I; Gois A; Capelo-Neto J Sci Total Environ; 2020 Oct; 740():139737. PubMed ID: 32927561 [TBL] [Abstract][Full Text] [Related]
11. Evidence-Based Framework to Manage Cyanobacteria and Cyanotoxins in Water and Sludge from Drinking Water Treatment Plants. Jalili F; Moradinejad S; Zamyadi A; Dorner S; Sauvé S; Prévost M Toxins (Basel); 2022 Jun; 14(6):. PubMed ID: 35737071 [TBL] [Abstract][Full Text] [Related]
12. Early warning method for cyanobacteria toxin, taste and odor problems by the evaluation of fluorescence signals. Moldaenke C; Fang Y; Yang F; Dahlhaus A Sci Total Environ; 2019 Jun; 667():681-690. PubMed ID: 30833266 [TBL] [Abstract][Full Text] [Related]
13. Production of drinking water from raw water containing cyanobacteria--pilot plant studies for assessing the risk of microcystin breakthrough. Schmidt W; Willmitzer H; Bornmann K; Pietsch J Environ Toxicol; 2002; 17(4):375-85. PubMed ID: 12203960 [TBL] [Abstract][Full Text] [Related]
14. Effect of ozonation on the removal of cyanobacterial toxins during drinking water treatment. Hoeger SJ; Dietrich DR; Hitzfeld BC Environ Health Perspect; 2002 Nov; 110(11):1127-32. PubMed ID: 12417484 [TBL] [Abstract][Full Text] [Related]
15. Occurrence of cyanobacteria and microcystin toxins in raw and treated waters of the Nile River, Egypt: implication for water treatment and human health. Mohamed ZA; Deyab MA; Abou-Dobara MI; El-Sayed AK; El-Raghi WM Environ Sci Pollut Res Int; 2015 Aug; 22(15):11716-27. PubMed ID: 25854210 [TBL] [Abstract][Full Text] [Related]
16. Occurrence of microcystins in raw water sources and treated drinking water of Finnish waterworks. Lahti K; Rapala J; Kivimäki AL; Kukkonen J; Niemelä M; Sivonen K Water Sci Technol; 2001; 43(12):225-8. PubMed ID: 11464762 [TBL] [Abstract][Full Text] [Related]
17. Low vapor pressure deficit reduces glandular trichome density and modifies the chemical composition of cuticular waxes in silver birch leaves. Lihavainen J; Ahonen V; Keski-Saari S; Sõber A; Oksanen E; Keinänen M Tree Physiol; 2017 Sep; 37(9):1166-1181. PubMed ID: 28460081 [TBL] [Abstract][Full Text] [Related]
18. Elimination of microcystins by water treatment processes-examples from Sulejow Reservoir, Poland. Jurczak T; Tarczynska M; Izydorczyk K; Mankiewicz J; Zalewski M; Meriluoto J Water Res; 2005 Jun; 39(11):2394-406. PubMed ID: 15927226 [TBL] [Abstract][Full Text] [Related]
19. Removal of micropollutants and cyanobacteria from drinking water using KMnO Jian Z; Bai Y; Chang Y; Liang J; Qu J Chemosphere; 2019 Jan; 215():1-7. PubMed ID: 30300806 [TBL] [Abstract][Full Text] [Related]
20. Evaluation of potassium ferrate as an alternative disinfectant on cyanobacteria inactivation and associated toxin fate in various waters. Fan J; Lin BH; Chang CW; Zhang Y; Lin TF Water Res; 2018 Feb; 129():199-207. PubMed ID: 29149675 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]