These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

481 related articles for article (PubMed ID: 31096411)

  • 21. Identifying gaps in actual and simulated/potential yield and growing season precipitation in Morocco.
    Epule TE; Chehbouni A; Dhiba D; Etongo D; Achli S; Salih W; Er-Raki S
    Environ Sci Pollut Res Int; 2022 Dec; 29(56):84844-84860. PubMed ID: 35788488
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Modeling the impact of crop rotation with legume on nitrous oxide emissions from rain-fed agricultural systems in Australia under alternative future climate scenarios.
    Ma Y; Schwenke G; Sun L; Liu L; Wang B; Yang B
    Sci Total Environ; 2018 Jul; 630():1544-1552. PubMed ID: 29554771
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Application of water footprint combined with a unified virtual crop pattern to evaluate crop water productivity in grain production in China.
    Wang YB; Wu PT; Engel BA; Sun SK
    Sci Total Environ; 2014 Nov; 497-498():1-9. PubMed ID: 25112819
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Growth and dry matter partitioning response in cereal-legume intercropping under full and limited irrigation regimes.
    Amanullah ; Khalid S; Khalil F; Elshikh MS; Alwahibi MS; Alkahtani J; Imranuddin ; Imran
    Sci Rep; 2021 Jun; 11(1):12585. PubMed ID: 34131225
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cover crop performance under a changing climate in continuous corn system over Nebraska.
    Birru G; Shiferaw A; Tadesse T; Wardlow B; Jin VL; Schmer MR; Awada T; Kharel T; Iqbal J
    J Environ Qual; 2024; 53(1):66-77. PubMed ID: 37889790
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Climatically driven yield variability of major crops in Khakassia (South Siberia).
    Вabushkina EA; Belokopytova LV; Zhirnova DF; Shah SK; Kostyakova TV
    Int J Biometeorol; 2018 Jun; 62(6):939-948. PubMed ID: 29289995
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Consumptive water footprint and virtual water trade scenarios for China - With a focus on crop production, consumption and trade.
    Zhuo L; Mekonnen MM; Hoekstra AY
    Environ Int; 2016 Sep; 94():211-223. PubMed ID: 27262784
    [TBL] [Abstract][Full Text] [Related]  

  • 28. "More crop per drop": Exploring India's cereal water use since 2005.
    Kayatz B; Harris F; Hillier J; Adhya T; Dalin C; Nayak D; Green RF; Smith P; Dangour AD
    Sci Total Environ; 2019 Jul; 673():207-217. PubMed ID: 30986680
    [TBL] [Abstract][Full Text] [Related]  

  • 29. An evaluation of the water utilization and grain production of irrigated and rain-fed croplands in China.
    Cao X; Wang Y; Wu P; Zhao X; Wang J
    Sci Total Environ; 2015 Oct; 529():10-20. PubMed ID: 26005745
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Evaluation of climate change impacts and adaptation strategies on rainfed rice production in Songkhram River Basin, Thailand.
    Boonwichai S; Shrestha S; Babel MS; Weesakul S; Datta A
    Sci Total Environ; 2019 Feb; 652():189-201. PubMed ID: 30366320
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of temperature, precipitation and carbon dioxide concentrations on the requirements for crop irrigation water in China under future climate scenarios.
    Zhang Y; Wang Y; Niu H
    Sci Total Environ; 2019 Mar; 656():373-387. PubMed ID: 30513428
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Cover crops mitigate direct greenhouse gases balance but reduce drainage under climate change scenarios in temperate climate with dry summers.
    Tribouillois H; Constantin J; Justes E
    Glob Chang Biol; 2018 Jun; 24(6):2513-2529. PubMed ID: 29443447
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Future climate change could reduce irrigated and rainfed wheat water footprint in arid environments.
    Deihimfard R; Rahimi-Moghaddam S; Collins B; Azizi K
    Sci Total Environ; 2022 Feb; 807(Pt 3):150991. PubMed ID: 34656577
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Modifying the Soil and Water Assessment Tool to simulate cropland carbon flux: model development and initial evaluation.
    Zhang X; Izaurralde RC; Arnold JG; Williams JR; Srinivasan R
    Sci Total Environ; 2013 Oct; 463-464():810-22. PubMed ID: 23859899
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Spatiotemporal variation of irrigation water requirements for grain crops under climate change in Northwest China.
    Zhang J; Deng M; Han Y; Huang H; Yang T
    Environ Sci Pollut Res Int; 2023 Apr; 30(16):45711-45724. PubMed ID: 36708471
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Agriculture, bioenergy, and water implications of constrained cereal trade and climate change impacts.
    Zhang Y; Waldhoff S; Wise M; Edmonds J; Patel P
    PLoS One; 2023; 18(9):e0291577. PubMed ID: 37713389
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Future climate change impacts on wheat grain yield and protein in the North China Region.
    Zhang D; Liu J; Li D; Batchelor WD; Wu D; Zhen X; Ju H
    Sci Total Environ; 2023 Dec; 902():166147. PubMed ID: 37562625
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Climate variability impacts on rainfed cereal yields in west and northwest Iran.
    Nouri M; Homaee M; Bannayan M
    Int J Biometeorol; 2017 Sep; 61(9):1571-1583. PubMed ID: 28421270
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Responses of crop growth and water productivity to climate change and agricultural water-saving in arid region.
    Liu M; Xu X; Jiang Y; Huang Q; Huo Z; Liu L; Huang G
    Sci Total Environ; 2020 Feb; 703():134621. PubMed ID: 31759711
    [TBL] [Abstract][Full Text] [Related]  

  • 40. ERA5-based global assessment of irrigation requirement and validation.
    Rolle M; Tamea S; Claps P
    PLoS One; 2021; 16(4):e0250979. PubMed ID: 33930081
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 25.